[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Uniqueness for Quasi-variational Inequalities

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

This paper presents a uniqueness result for a quasi-variational inequality QVI(1) that, in contrast to existing results, does not require the projection mapping on a variable closed and convex set to be a contraction. Our basic idea is to find a simple QVI(0), for example a variational inequality, for which we can show the existence of a unique solution. Further, exploiting some nonsingularity condition, we will guarantee the existence of a continuous solution path from the unique solution of QVI(0) to a solution of QVI(1). Finally, we can show that the existence of a second different solution of QVI(1) contradicts the nonsingularity condition. Moreover, we present some matrix-based sufficient conditions for our nonsingularity assumption, and we discuss these assumptions in the context of generalized Nash equilibrium problems with quadratic cost and affine linear constraint functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Bensoussan, A., Goursat, M., Lions, J.-L.: Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires. C. R. Acad. Sci. Paris Sér. A 276, 1279–1284 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Bensoussan, A., Lions, J.-L.: Nouvelle formulation de problèmes de contrôle impulsionnel et applications. C. R. Acad. Sci. Paris Sér. A 276, 1189–1192 (1973)

    MathSciNet  MATH  Google Scholar 

  4. Bensoussan, A., Lions, J.-L.: Nouvelles méthodes en contrôle impulsionnel. Appl. Math. Optim. 1, 289–312 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, D., Pang, J.S.: The generalized quasi-variational inequality problem. Math. Oper. Res. 7, 211–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  7. Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press , Boston (1992)

    MATH  Google Scholar 

  8. Facchinei, F., Kanzow, C.: Generalized Nash equilibrium problems. Ann. Oper. Res. 1755, 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Facchinei, F., Kanzow, C., Sagratella, S.: Solving quasi-variational inequalities via their KKT-conditions. Math. Program. 144, 369–412 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I+II. Springer, New York (2003)

  11. Mosco, U.: Implicit variational problems and quasi variational inequalities. In: Gossez, J., Lami Dozo, E., Mawhin, J., Waelbroeck, L. (eds.) Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics, vol. 543, pp 83–156. Springer, Berlin (1976)

  12. Nesterov, Y., Scrimali, L.: Solving strongly monotone variational and quasi-variational inequalities. CORE discussion paper 2006/107. Catholic University of Louvian, Belgium (2006)

  13. Noor, M.A., Oettli, W.: On general nonlinear complementarity problems and quasiequilibria. Le Matematiche XLIX, pp. 313–331 (1994)

  14. Simsek, A., Ozdaglar, A., Acemoglu, A.: Generalized Poincare-Hopf theorem for compact nonsmooth regions. Math. Oper. Res. 32, 193–214 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simsek, A., Ozdaglar, A., Acemoglu, A.: Uniqueness of generalized equilibrium for box constrained problems and applications. In: Proceedings of Allerton Conference. http://web.mit.edu/asuman/www/documents/boxConstraintJournalVersion.pdf (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Dreves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreves, A. Uniqueness for Quasi-variational Inequalities. Set-Valued Var. Anal 24, 285–297 (2016). https://doi.org/10.1007/s11228-015-0339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-015-0339-2

Keywords

Mathematics Subject Classification (2010)

Navigation