[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Metric and Calmness Qualification Conditions in Subdifferential Calculus

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

The paper contains two groups of results. The first are criteria for calmness/subregularity for set-valued mappings between finite-dimensional spaces. We give a new sufficient condition whose subregularity part has the same form as the coderivative criterion for “full” metric regularity but involves a different type of coderivative which is introduced in the paper. We also show that the condition is necessary for mappings with convex graphs. The second group of results deals with the basic calculus rules of nonsmooth subdifferential calculus. For each of the rules we state two qualification conditions: one in terms of calmness/subregularity of certain set-valued mappings and the other as a metric estimate (not necessarily directly associated with aforementioned calmness/subregularity property). The conditions are shown to be weaker than the standard Mordukhovich–Rockafellar subdifferential qualification condition; in particular they cover the cases of convex polyhedral set-valued mappings and, more generally, mappings with semi-linear graphs. Relative strength of the conditions is thoroughly analyzed. We also show, for each of the calculus rules, that the standard qualification conditions are equivalent to “full” metric regularity of precisely the same mappings that are involved in the subregularity version of our calmness/subregularity condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aussel, A., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Amer. Math. Soc. 357, 1275–1301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Azè, D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12, 79–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heerda, J., Kummer, B.: Characterization of calmness for Banach space mappings, pp. 06–26. HUB Preprint Reihe (Mathematik) 06–26 (2006)

  6. Henrion, R., Jourani, A., Outrata, J.V.: On the calmness of a class of multifunctions. SIAM J. Optim. 13, 603–618 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Henrion, R., Outrata, J.V.: Calmness of constraint systems with applications. Math. Programming 104, 437–464 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ioffe, A.D.: Necessary and sufficient conditions for a local minimum, Part I: A reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ioffe, A.D.: Regular points of Lipschitz functions. Trans. Amer. Math. Soc. 251, 61–69 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ioffe, A.D.: Sous-differentielles approches de fonctions numériques. C.R. Acad. Sci. Paris 292, 675–678 (1981)

    MathSciNet  MATH  Google Scholar 

  11. Ioffe, A.D.: Approximate subdifferentials and applications 1. The finite dimensional theory. Trans. Amer. Math. Soc. 28, 389–416 (1984)

    Article  MathSciNet  Google Scholar 

  12. Ioffe, A.D.: Proximal analysis and approximate subdifferentials. J. London Math. Soc. 41, 175–192 (1989)

    Article  MathSciNet  Google Scholar 

  13. Ioffe, A.D.: Metric regularity and subdifferential calculus. Uspehi Mat. Nauk 55(3), 103–162 (2000) (in Russian), English translation: Russian Math. Surveys 55(3), 501–558 (2000)

    MathSciNet  Google Scholar 

  14. Ioffe, A.D.: Codirectional compactness, metric regularity and subdifferential calculus. In: Thera, M. (ed.) Constructive, Experimental and Nonlinear Analysis, Canadian Math. Soc. Conference Proc. V. 27, 123–163 (2000)

  15. Ioffe, A.D., Penot, J.-P.: Subdifferentials of performance functions and calculus of coderivatives of set-valued mappings. Serdica Math. J. 22, 359–384 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Jourani, A., Thibault, L.: Metric regularity and subdifferential calculus in Banach spaces. Set-Valued Anal. 3, 87–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jourani, A., Thibault, L.: Qualification conditions for calculus rules of coderivatives of multivalued mappings. J. Math. Anal. Appl. 218, 66–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization-Regularity, Calculus, Methods and Applications. Kluwer (2002)

  19. Kruger, A.Ya.: Generalized Differentials of Nonsmooth Functions and Necessary Conditions for an Extremum. PhD Dissertation, Belarus State University, Minsk, Belarus (1981)

  20. Mordukhovich, B.S.: Maximum principle in problems of time optimal control with nonsmooth constraints. J. Appl. Math. Mech. 40, 960–969 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mordukhovich, B.S.: Metric approximations and necessary optimality conditions for general classes of extremal problems. Soviet Math. Dokl. 22, 526–530 (1980)

    MATH  Google Scholar 

  22. Mordukhovich, B.S.: Nonsmooth analysis with convex generalised subdifferentials and conjugate mappings. Doklady Akad. Nauk BSSR 28, 976–979 (1984)

    MathSciNet  MATH  Google Scholar 

  23. Mordukhovich, B.S.: Generalized differential calculus for nonsmooth and set-valued mappings. J. Math. Anal. Appl. 183, 250–288 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mordukhovich, B.S.: Lipschitzian stability of constraint systems and generalized equations. Nonlinear Anal. 22, 173–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mordukhovich, B.S.: Calculus of second-order subdifferentials in infinite dimensions. Control Cybernet. 31, 558–573 (2002)

    MathSciNet  Google Scholar 

  26. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, vols. I and II, Springer (2006)

  27. Mordukhovich, B.S., Outrata, J.V.: On second-order subdifferentials and their applications. SIAM J. Optim. 12, 139–169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mordukhovich, B.S., Shao, Y.: Nonconvex subdifferential calculus for infinite dimensional multifunctions. Set-Valued Anal. 4, 205–236 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ng, K.F., Zheng, X.Y.: Error bounds for lower semicontinuous functions in normed spaces. SIAM J. Optim. 12, 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ngai, H.V., Théra, M.: Metric inequality, subdifferential calculus and applications. Set-Valued Anal. 9, 187–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rockafellar, R.T.: Extensions of subgradient calculus with applications to optimization. Nonlinear Anal. 9, 1553–1571 (1985)

    Google Scholar 

  32. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, Springer (1998)

  33. Song, W.: Calmness and error bounds for convex constraint systems. SIAM J. Optim. 17, 353–371 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Studniarski, M., Ward, D.E.: Weak sharp minima: characaterizations and sufficient conditions. SIAM J. Control Optim. 38, 219–236 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří V. Outrata.

Additional information

This paper is dedicated to Prof. B. S. Mordukhovich on the occasion of his 60th birthday.

The research of Jiří V. Outrata was supported by the grant A 107 5402 of the Grant Agency of the Academy of Sciences of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, A.D., Outrata, J.V. On Metric and Calmness Qualification Conditions in Subdifferential Calculus. Set-Valued Anal 16, 199–227 (2008). https://doi.org/10.1007/s11228-008-0076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-008-0076-x

Keywords

Mathematics Subject Classifications (2000)

Navigation