[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Modeling and predicting measured response time of cloud-based web services using long-memory time series

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Predicting cloud performance from user’s perspective is a complex task, because of several factors involved in providing the service to the consumer. In this work, the response time of 10 real-world services is analyzed. We have observed long memory in terms of the measured response time of the CPU-intensive services and statistically verified this observation using estimators of the Hurst exponent. Then, naïve, mean, autoregressive integrated moving average (ARIMA) and autoregressive fractionally integrated moving average (ARFIMA) methods are used to forecast the future values of quality of service (QoS) at runtime. Results of the cross-validation over the 10 datasets show that the long-memory ARFIMA model provides the mean of 37.5 % and the maximum of 57.8 % reduction in the forecast error when compared to the short-memory ARIMA model according to the standard error measure of mean absolute percentage error. Our work implies that consideration of the long-range dependence in QoS data can help to improve the selection of services according to their possible future QoS values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amin A, Colman A, Grunske L (2012) An approach to forecasting QoS attributes of web services based on ARIMA and GARCH models. In: Proceedings of 19th IEEE international conference on web services (ICWS 2012), pp 74–81. doi:10.1109/ICWS.2012.37

  2. Beran J (1994) Statistics for long-memory processes, vol 61. CRC Press, New York

    MATH  Google Scholar 

  3. Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting. Taylor & Francis, USA

    Book  MATH  Google Scholar 

  4. Cavallo B, Di Penta M, Canfora G (2010) An empirical comparison of methods to support QoS-aware service selection. In: Proceedings of the 2nd international workshop on principles of engineering service-oriented systems, ACM, pp 64–70. doi:10.1145/1808885.1808899

  5. Elbiaze H, Zhani MF, Cherkaoui O, Kamoun F (2010) A new structure-preserving method of sampling for predicting self-similar traffic. Telecommun Syst 43(3–4):265–277. doi:10.1007/s11235-009-9201-x

    Article  Google Scholar 

  6. Fraley C, Leisch F, Maechler M, Reisen V, Lemonte A (2012) fracdiff: Fractionally differenced ARIMA aka ARFIMA(p, d, q) models. URL http://CRAN.R-project.org/package=fracdiff

  7. Ghaderi M (2003) On the relevance of self-similarity in network traffic prediction. School of Computer Science, University of Waterloo, Technical report

  8. Granger CW, Joyeux R (1980) An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1(1):15–29. doi:10.1111/j.1467-9892.1980.tb00297.x

    Article  MATH  MathSciNet  Google Scholar 

  9. Hurst HE (1951) Long-term storage capacity of reservoirs. Trans Am Soc Civ Eng 116:770–808

    Google Scholar 

  10. Hyndman RJ, Athanasopoulos G (2014) Forecasting: principles and practice. OTexts. URL https://www.otexts.org/fpp/

  11. Hyndman RJ, Athanasopoulos G, Razbash S, Schmidt D, Zhou Z, Khan Y, Bergmeir C (2014) forecast: Forecasting functions for time series and linear models. URL http://CRAN.R-project.org/package=forecast

  12. Leitner P, Ferner J, Hummer W, Dustdar S (2013) Data-driven and automated prediction of service level agreement violations in service compositions. Distrib Parallel Databases 31:447–470. doi:10.1007/s10619-013-7125-7

    Article  Google Scholar 

  13. Leland WE, Taqqu MS, Willinger W, Wilson DV (1993) On the self-similar nature of Ethernet traffic. SIGCOMM Comput Commun Rev 23(4):183–193. doi:10.1145/167954.166255

    Article  Google Scholar 

  14. Leland WE, Taqqu MS, Willinger W, Wilson DV (1994) On the self-similar nature of Ethernet traffic (extended version). IEEE ACM Trans Netw 2(1):1–15. doi:10.1109/90.282603

    Article  Google Scholar 

  15. Malamud BD, Turcotte DL (1999) Self-affine time series: I. Generation and analyses. Adv Geophys 40:1–90. doi:10.1016/S0065-2687(08)60293-9

    Article  Google Scholar 

  16. Mandelbrot BB (1967) How long is the coast of Britain. Science 156(3775):636–638. doi:10.1126/science.156.3775.636

    Article  Google Scholar 

  17. Mandelbrot BB (1983) The fractal geometry of nature. Macmillan, New York

    Google Scholar 

  18. Mandelbrot BB (1997) Fractals and scaling in finance: discontinuity and concentration. Springer, New York

    Book  MATH  Google Scholar 

  19. Mandelbrot BB, Wallis JR (1968) Noah, Joseph, and operational hydrology. Water Resour Res 4(5):909–918. doi:10.1029/WR004i005p00909

    Article  Google Scholar 

  20. Mandelbrot BB, Wallis JR (1969) Computer experiments with fractional Gaussian noises: part 3. Mathematical appendix. Water Resour Res 5(1):260–267. doi:10.1029/WR005i001p00260

    Article  Google Scholar 

  21. Palma W (2007) Long-memory time series: theory and methods, vol 662. Wiley, New Jersey

  22. Park K, Willinger W (2000) Self-similar network traffic and performance evaluation. John Wiley & Sons, Inc., New York

    Book  Google Scholar 

  23. Paxson V, Floyd S (1995) Wide area traffic: the failure of Poisson modeling. IEEE ACM Trans Netw 3(3):226–244. doi:10.1109/90.392383

    Article  Google Scholar 

  24. R Core Team (2014) R: a language and environment for statistical computing. URL http://www.R-project.org/

  25. Schroeder M (2009) Number theory in science and communication: with applications in cryptography, physics, digital information, computing, and self-similarity, vol 7. Springer, Berlin

    Google Scholar 

  26. Serinaldi F (2010) Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series. Physica A 389(14):2770–2781. doi:10.1016/j.physa.2010.02.044

    Article  Google Scholar 

  27. Shu Y, Jin Z, Wang J, Yang OW (2000) Prediction-based admission control using FARIMA models. In: Proceedings of 2000 IEEE international conference on communications (ICC 2000), vol 3, pp 1325–1329. doi:10.1109/ICC.2000.853713

  28. Solomon A, Litoiu M (2011) Business process performance prediction on a tracked simulation model. In: Proceedings of the 3rd international workshop on principles of engineering service-oriented systems, ACM, pp 50–56. doi:10.1145/1985394.1985402

  29. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J R Stat Soc Ser B Stat Methodol 36:111–147

    MATH  Google Scholar 

  30. Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 3(04):785–798. doi:10.1142/S0218348X95000692

    Article  MATH  Google Scholar 

  31. Wickham H (2011) The split-apply-combine strategy for data analysis. J Stat Softw 40(1):1–29. URL http://www.jstatsoft.org/v40/i01/

  32. Willinger W, Taqqu MS, Sherman R, Wilson DV (1997) Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level. IEEE ACM Trans Netw 5(1):71–86. doi:10.1109/90.554723

    Article  Google Scholar 

  33. Wuertz D (2013) fArma: ARMA time series modelling. URL http://CRAN.R-project.org/package=fArma

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kazem Akbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nourikhah, H., Akbari, M.K. & Kalantari, M. Modeling and predicting measured response time of cloud-based web services using long-memory time series. J Supercomput 71, 673–696 (2015). https://doi.org/10.1007/s11227-014-1317-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-014-1317-4

Keywords

Navigation