[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Unveiling the intellectual origins of Social Media-based innovation: insights from a bibliometric approach

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

This article uses a bundle of bibliometric and text-mining techniques to provide a systematic assessment of the intellectual core of the Social Media-based innovation research field. The goal of this study is to identify main research areas, understand the current state of development and suggest potential future directions by analysing co-citations from 155 papers published between 2003 and 2013 in the most influential academic journals. The main clusters have been identified, mapped, and labelled. Their most active areas on this topic and the most influential and co-cited papers have been identified and described. Also, intra- and inter-cluster knowledge base diversity has been assessed by using indicators stemming from the domains of Information Theory and Biology. A t test has been performed to assess the significance of the inter-cluster diversity. Five co-existing research streams shaping the research field under investigation have been identified and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Within the ABS Journal Quality Guide v.4, we searched for top journals with a Quality Rating of 3, 4, and 4* publishing original and well-executed research papers. We filtered out journals with a Quality Rating below 3.

  2. Topic = ((("social media" OR "social media-based" OR "social platform" OR ("social network" AND (Facebook OR Twitter OR Flickr OR Linkedin)) OR “Facebook” OR “Twitter” OR “Flickr” OR “Linkedin” OR "Web-based platform*" OR "Web 2.0" OR "social software" OR "toolkit*" OR "open innovation software" OR “open innovation platform” OR "semantic web" OR "R&D platforms" OR "design platform*" OR "idea* platform*" OR "online communit*" OR “brand communit*” OR “user communit*” OR “virtual customer” OR “virtual worlds” OR “virtual environment” OR “virtual integration” OR “crowdsourcing” OR “digital consumer” OR “virtual team”) AND (innovation OR "idea generation" OR "product development" OR "ideation" OR "idea evaluation" OR "idea execution" OR “customer participation” OR “co-creation”))). Refined by: Web of Science Categories = (MANAGEMENT OR BUSINESS) AND Document Types = (ARTICLE OR REVIEW). Timespan = 2003–2013. Databases = SCI-EXPANDED, SSCI, A&HCI, CCR-EXPANDED, IC.

  3. The complete list of 155 core publications is provided as Supplementary Material.

  4. This law proposes that a few journals, publications, scientists, etc. contain the majority of articles, citations (Garfield 1980).

  5. For a comprehensive mathematical justification of the index derivation and characterization, refer to Pielou (1969), Hutcheson (1970), Bowman et al. (1971).

  6. Complete tables are available on request.

  7. The minimum number of citations of a cited reference is two. Out of 6258 cited references, 1019 meet the threshold.

  8. A note of caution: the Shannon–Wiener diversity index is a non-parametric index. Hence, no assumptions are made about the shape of the underlying species abundance distribution (Southwood and Henderson 2000; Magurran and McGill 2011). A substantial error can arise when the sample does not include all the species in the community (Peet 1974); however, as the true species richness of an assemblage is usually unknown, an unbiased estimator of the Shannon-Wiener index does not exist (Lande 1996). Hutcheson (1970), by assuming that each population is normally (or nearly normally) distributed and that the values of real variances are not known, advanced a test with a statistic following an approximate t-distribution with specific degrees of freedom. Deviations from these assumptions may invalidate t test results; assessments concerning significant differences of cluster diversities may rely on absolute (jack-knifed) values of the Shannon-Wiener index only.

References

  • Acedo, F. J. (2005). Current paradigms in the international management field: An author co-citation analysis. International Business Review, 14(5), 619–639.

    Article  MathSciNet  Google Scholar 

  • Adams, J. E., & McCune, E. D. (1979). Application of the generalized jack-knife to Shannon’s measure of information used as an index of diversity. In J. F. Grassle, G. P. Patil, W. Smith, & C. Taille (Eds.), Ecological diversity in theory and practice (pp. 117–131). Fairland, MD: International Co-operative Publishing House.

    Google Scholar 

  • Agrawal, M., Kumaresh, T. V., & Mercer, G. A. (2001). The false promise of mass customization. The McKinsey Quarterly, 3, 62–71.

    Google Scholar 

  • Alavi, M., & Leidner, D. E. (2001). Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly, 25(1), 107–136.

    Article  Google Scholar 

  • Appio, F., Cesaroni, F., & Di Minin, A. (2014). Visualizing the structure and bridges of the intellectual property management and strategy literature: A document co-citation analysis. Scientometrics, 101(1), 623–661.

    Article  Google Scholar 

  • Bagozzi, R. P., & Lee, K. (2002). Multiple routes for social influence: The role of compliance, internalization, and social identity. Social Psychology Quarterly, 65(3), 226–247.

    Article  Google Scholar 

  • Balachandra, R., & Friar, J. H. (1997). Factors for success in R&D projects and new product innovation: A contextual framework. IEEE Transactions on Engineering Management, 44(3), 276–287.

    Article  Google Scholar 

  • Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.

    Article  Google Scholar 

  • Bandura, A. (1997). Self-Efficacy: The exercise of control. New York: W.H. Freeman.

    Google Scholar 

  • Bjelland, O. M., & Wood, R. C. (2008). An inside view of IBM’s ‘Innovation Jam’. MIT Sloan Management Review, 50(1), 32–40.

    Google Scholar 

  • Bolton, R. N., Parasuraman, A., Hoefnagels, A., Migchels, N., Kabadayi, S., Gruber, T., et al. (2013). Understanding Generation Y and their use of social media: A review and research agenda. Journal of Service Management, 54(3), 245–267.

    Google Scholar 

  • Bowman, K. O., Hutchenson, K., Odum, E. P., & Shenton, L. R. (1971). Comments on the distribution of indices of diversity. In G. P. Patil, E. C. Pielou, & W. E. Waters (Eds.), Statistical ecology (pp. 315–359). London: Pennsylvanian State University Press.

    Google Scholar 

  • Brown, J., & Duguid, P. (1991). Organizational learning and communities of practice: Toward a unified view of working, learning, and innovating. Organization Science, 2(1), 40–57.

    Article  Google Scholar 

  • Brown, S. L., & Eisenhardt, K. M. (1995). Product development: Past research, present findings, and future directions. Academy of Management Review, 20(2), 343–378.

    Google Scholar 

  • Bullinger, A. C., Neyer, A. K., Rass, M., & Moeslein, K. M. (2010). Community-based innovation contests: Where competition meets cooperation. Creativity and Innovation Management, 19(3), 290–303.

    Article  Google Scholar 

  • Burke, R. R., Rangaswamy, A., & Gupta, S. (2001). Rethinking market research in the digital world. In J. Wind & V. Mahajan (Eds.), Digital marketing. Global strategies from the world’s leading experts (pp. 226–255). New York: Wiley.

    Google Scholar 

  • Chen, C., Cribbin, T., Macredie, R., & Morar, S. (2002). Visualizing and tracking the growth of competing research streams: Two case studies. Journal of the American Society for Information Science and Technology, 53(8), 678–689.

    Article  Google Scholar 

  • Chen, C., Ibekwe-SanJuan, F., & Hou, J. (2010). The structure and dynamics of co-citation clusters: A multiple-perspective co-citation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386–1409.

    Article  Google Scholar 

  • Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting from technology. Boston: Harvard Business Press.

    Google Scholar 

  • Chesbrough, H. W. (2011). Open services innovation. Rethinking your business to grow and compete in a new era. New York: Wiley.

    Book  Google Scholar 

  • Chiu, C.-M., Hsu, M.-H., & Wang, E. T. G. (2006). Understanding knowledge sharing in virtual communities: An integration of social capital and social cognitive theories. Decision Support Systems, 42(3), 1872–1888.

    Article  Google Scholar 

  • Cooke, M., & Buckley, N. (2008). Web 2.0 Social networks and the future of market research. International Journal of Market Research, 50(2), 267–292.

    Google Scholar 

  • Corrocher, N. (2011). The adoption of Web 2.0 services: An empirical investigation. Technological Forecasting and Social Change, 78(4), 547–558.

    Article  Google Scholar 

  • Corrocher, N., & Ordanini, A. (2002). Measuring the digital divide: A framework for the analysis of cross-country differences. Journal of Information Technology, 17(1), 9–19.

    Article  Google Scholar 

  • Cortizo, J. C., Carrero, F. M., & Gómez, J. M. (2011). Introduction to the special issue: Mining Social Media. International Journal of Electronic Commerce, 15(3), 5–8.

    Article  Google Scholar 

  • Culnan, M. J., McHugh, P. J., & Zubillaga, J. I. (2010). How large US companies can use Twitter and other social media to gain business value. MIS Quarterly Executive, 9(4), 243–259.

    Google Scholar 

  • Cusumano, M. A., & Nobeoka, K. (1992). Strategy, structure and performance in product development: Observations from the auto industry. Research Policy, 21(3), 265–293.

    Article  Google Scholar 

  • Dahan, E., & Hauser, J. R. (2002). The virtual customer. Journal of Product Innovation Management, 19(5), 332–353.

    Article  Google Scholar 

  • Dahlander, L., & Gann, D. M. (2010). How open is innovation? Research Policy, 39(6), 699–709.

    Article  Google Scholar 

  • David, R. J., & Han, S. K. (2004). A systematic assessment of the empirical support for transaction cost economics. Strategic Management Journal, 25(1), 39–58.

    Article  Google Scholar 

  • Davis, S. M. (1987). Future perfect. Reading, MA: Addison-Wesley.

    Google Scholar 

  • DuBois, F. L., & Reeb, D. (2000). Ranking the international business journals. Journal of International Business Studies, 31(4), 689–704.

    Article  Google Scholar 

  • Di Gangi, P. M., & Wasko, M. (2009). Steal my idea! Organizational adoption of user innovations from a user innovation community: A case study of Dell IdeaStorm. Decision Support Systems, 48(1), 303–312.

    Article  Google Scholar 

  • Di Gangi, P. M., Wasko, M., & Hooker, R. (2010). Getting customers’ ideas to work for you: Learning from Dell how to succeed with online user innovation communities. MIS Quarterly Executive, 9(4), 213–228.

    Google Scholar 

  • Di Stefano, G., Peteraf, M., & Verona, G. (2010). Dynamic capabilities deconstructed: A bibliographic investigation into the origins, development, and future directions of the research domain. Industrial and Corporate Change, 19(4), 1187–1204.

    Article  Google Scholar 

  • Ebner, W., Leimeister, J. M., & Krcmar, H. (2009). Community engineering for innovations: The ideas competition as a method to nurture a virtual community for innovations. R&D Management, 39(4), 342–356.

    Article  Google Scholar 

  • Effing, R., & Spil, T. A. M. (2016). The social strategy cone: Towards a framework for evaluating social media strategies. International Journal of Information Management, 36(1), 1–8.

    Article  Google Scholar 

  • Eisenhardt, K. M., & Graebner, M. (2007). Theory building from cases: Opportunities and challenges. Academy of Management Journal, 50(1), 25–32.

    Article  Google Scholar 

  • Franke, N., & Piller, F. T. (2003). Key research issues in user interaction with user toolkits in a mass customisation system. International Journal of Technology Management, 26(5), 578–599.

    Article  Google Scholar 

  • Franke, N., & Piller, F. (2004). Value creation by toolkits for user innovation and design: The case of the watch market. Journal of Product Innovation Management, 21(6), 401–415.

    Article  Google Scholar 

  • Franke, N., & Shah, S. (2003). How communities support innovative activities: An exploration of assistance and sharing among end-users. Research Policy, 32(1), 155–178.

    Article  Google Scholar 

  • Franke, N., & Von Hippel, E. (2003). Satisfying heterogeneous user needs via innovation toolkits: The case of Apache security software. Research Policy, 32(7), 1199–1215.

    Article  Google Scholar 

  • Füller, J. (2010). Refining virtual co-creation from a consumer perspective. California Management Review, 52(2), 98–122.

    Article  Google Scholar 

  • Füller, J., Bartl, M., Ernst, H., & Mühlbacher, H. (2006). Community based innovation: How to integrate members of virtual communities into new product development. Electronic Commerce Research, 6(1), 57–73.

    Article  Google Scholar 

  • Füller, J., Jawecki, G., & Muhlbacher, H. (2007). Innovation creation by online basketball communities. Journal of Business Research, 60(1), 60–71.

    Article  Google Scholar 

  • Füller, J., Matzler, K., & Hoppe, M. (2008). Brand community members as a source of innovation. Journal of Product Innovation Management, 25(6), 608–619.

    Article  Google Scholar 

  • Gallagher, J., & Ranbotham, S. (2010). Social media and customer dialog management at Starbucks. MIS Quarterly Executive, 9(4), 197–212.

    Google Scholar 

  • Gan, C., & Wang, W. (2015). Research characteristics and status on social media in China: A bibliometrics and co-word analysis. Scientometrics, 105(2), 1167–1182.

    Article  Google Scholar 

  • Garfield, E. (1980). Bradford’s law and related statistical patterns. Essays of an Information Scientist, 4(19), 476–483.

    Google Scholar 

  • Golder, P. N., Shacham, R., & Mitra, D. (2009). Innovations’ origins: When, by whom, and how are radical innovations developed? Marketing Science, 28(1), 166–179.

    Article  Google Scholar 

  • Gruner, K. E., & Homburg, C. (2000). Does customer interaction enhance new product success? Journal of Business Research, 49(1), 1–14.

    Article  Google Scholar 

  • Hars, A., & Ou, S. (2002). Working for free? Motivations for participating in open-source projects. International Journal of Electronic Commerce, 6(3), 25–39.

    Google Scholar 

  • Harvey, C. E., Kelly, A., Morris, H., & Rowlinson, M. (2010). Academic journal quality guide, version 4. London: The Association of Business Schools.

    Google Scholar 

  • He, W., & Wang, F. K. (2015). A process-based framework of using social media to support innovation process. Information Technology and Management. doi:10.1007/s10799-015-0236-2.

  • Heltshe, J. F., & Bitz, D. W. (1979). Comparing diversity measures in sampled communities. In F. Grassle, G. P. Patil, W. Smith, & C. Taille (Eds.), Ecological diversity in theory and practice (pp. 133–144). Fairland, MD: International Co-operative Publishing House.

    Google Scholar 

  • Herstatt, C., & Von Hippel, E. (1992). From experience: Developing new product concepts via the lead user method: A case study in a “low-tech” field. Journal of Product Innovation Management, 9(3), 213–221.

    Article  Google Scholar 

  • Hertel, G., Niedner, S., & Hermann, S. (2003). Motivation of software developers in Open Source projects: An Internet-based survey of contributors to the Linux kernel. Research Policy, 32(7), 1159–1177.

    Article  Google Scholar 

  • Hienerth, C., Keinz, P., & Lettl, C. (2011). Exploring the nature and implementation process of user-centric business models. Long Range Planning, 44(5), 344–374.

    Article  Google Scholar 

  • Hill, M. O. (1973). Diversity and evenness: A unifying notation and its consequences. Ecology, 54(2), 427–432.

    Article  Google Scholar 

  • Howe, J. (2008). Crowdsourcing: Why the power of the crowd is driving the future of business. New York, NY: Crown Publishing Group.

    Google Scholar 

  • Hsu, M.-H., Ju, T. L., Yen, C.-H., & Chang, C.-M. (2007). Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. International Journal of Human-Computer Studies, 65(2), 153–169.

    Article  Google Scholar 

  • Huston, L., & Sakkab, N. (2006). Connect and develop: Inside Procter & Gamble’s new model for innovation. Harvard Business Review, 84(3), 58–66.

    Google Scholar 

  • Hutcheson, K. (1970). A test for comparing diversities based on the Shannon formula. Journal of Theoretical Biology, 29(1), 151–154.

    Article  Google Scholar 

  • Hutter, K., Hautz, J., Füller, J., Mueller, J., & Matzler, K. (2011). Communitition: The tension between competition and collaboration in community-based design contests. Creativity and Innovation Management, 20(1), 3–21.

    Article  Google Scholar 

  • Jalonen, H. (2015). Dancing with the paradox—social media in innovation through complexity lens. International Journal of Innovation Management, 19(1), 1–26.

    Article  Google Scholar 

  • Jeppesen, L. B. (2005). User toolkits for innovation: Consumers support each other. Journal of Product Innovation Management, 22(4), 347–362.

    Article  Google Scholar 

  • Jeppesen, L. B., & Frederiksen, L. (2006). Why do users contribute to firm-hosted user communities? The case of computer-controlled music instruments. Organization Science, 17(1), 45–63.

    Article  Google Scholar 

  • Jeppesen, L. B., & Lakhani, K. R. (2010). Marginality and problem solving effectiveness in broadcast search. Organization Science, 21(5), 1016–1033.

    Article  Google Scholar 

  • Jeppesen, L. B., & Molin, M. J. (2003). Consumers as co-developers: Learning and innovation outside the firm. Technology Analysis & Strategic Management, 15(3), 363–383.

    Article  Google Scholar 

  • Junge, K. (1994). Diversity of ideas about diversity measurement. Scandinavian Journal of Psychology, 35(1), 16–26.

    Article  Google Scholar 

  • Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68.

    Article  Google Scholar 

  • Khan, G. F. (2013). Social media-based systems: An emerging area of information systems research and practice. Scientometrics, 95(1), 159–180.

    Article  Google Scholar 

  • Kohler, T., Matzler, K., & Fuller, J. (2009). Avatar-based innovation: Using virtual worlds for real-world innovation. Technovation, 29(6–7), 395–407.

    Article  Google Scholar 

  • Kozinets, R. V. (2002). The field behind the screen: Using netnography for marketing research in online communities. Journal of Marketing Research, 39(1), 61–72.

    Article  Google Scholar 

  • Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76(1), 5–13.

    Article  MathSciNet  Google Scholar 

  • Lazear, E. P., & Rosen, S. (1981). Rank-order tournaments as optimum labor contracts. Journal of Political Economy, 89(5), 841–864.

    Article  Google Scholar 

  • Lerner, J., & Tirole, J. (2002). Some simple economics of open source. Journal of Industrial Economics, 50(2), 197–234.

    Article  Google Scholar 

  • Li, C., & Bernoff, J. (2008). Groundswell: Winning in world transformed by social technologies. Boston, MA: Harvard Business Press.

    Google Scholar 

  • Lilien, G. L., Morrison, P. D., Searls, K., Sonnack, M., & Von Hippel, E. (2002). Performance assessment of the lead user idea-generation process for new product development. Management Science, 48(8), 1042–1059.

    Article  Google Scholar 

  • Lu, J. W. (2003). The evolving contributions in international strategic management research. Journal of International Management, 9(2), 193–213.

    Article  Google Scholar 

  • Magurran, A. E., & McGill, B. J. (2011). Biological diversity: Frontiers in measurement and assessment. Oxford: Oxford University Press.

    Google Scholar 

  • Margalef, R. (1972). Homage to Evelyn Hutchinson, or why there is an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences, 44, 211–235.

    Google Scholar 

  • Martini, A., Massa, S., & Testa, S. (2013). The firm, the platform and the customer: A ‘double mangle’ interpretation of social media for innovation. Information and Organization, 23(3), 198–213.

    Article  Google Scholar 

  • Martini, A., Massa, S., & Testa, S. (2014). Customer co-creation projects and social media: The case of Barilla of Italy. Business Horizon, 57, 425–434.

    Article  Google Scholar 

  • Maurer, B. A., & McGill, B. J. (2011). Measurement of species diversity. In A. E. Magurran & B. J. McGill (Eds.), Biological diversity: Frontiers in measurement and assessment (pp. 55–65). Oxford: Oxford University Press.

    Google Scholar 

  • May, R. M. (1975). Patterns of species abundance and diversity. In M. L. Cody & J. M. Diamond (Eds.), Ecology and evolution of communities (pp. 81–120). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • McCain, K. W. (1990). Mapping authors in intellectual space: A technical overview. Journal of the American Society for Information Science, 41(6), 433–443.

    Article  Google Scholar 

  • McDonald, D. G., & Dimmick, J. (2003). The conceptualization and measurement of diversity. Communication Research, 30(1), 60–79.

    Article  Google Scholar 

  • Morris, H., Harvey, C. E., & Kelly, A. (2009). Journal rankings and the ABS journal quality guide. Management Decision, 47(9), 1441–1451.

    Article  Google Scholar 

  • Morrison, P. D., Roberts, J. H., & Von Hippel, E. (2000). Determinants of user innovation and innovation sharing in a local market. Management Science, 46(12), 1513–1527.

    Article  Google Scholar 

  • Nambisan, S. (2002). Designing virtual customer environments for new product development: Toward a theory. Academy of Management Review, 27(3), 392–413.

    Google Scholar 

  • Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks. Physical Review E, 69(6), 066133.

    Article  Google Scholar 

  • Ngai, E. W. T., Moon, K.-I. K., Lam, S. S., Chin, E. S. K., & Tao, S. S. C. (2015a). Social media models, technologies, and applications: an academic review and case study. Industrial Management & Data Systems, 115(5), 769–802.

    Article  Google Scholar 

  • Ngai, E. W. T., Tao, S. S. C., & Moon, K.-I. K. (2015b). Social media research: Theories, constructs, and conceptual frameworks. International Journal of Information Management, 35(1), 33–44.

    Article  Google Scholar 

  • Noack, A. (2007). Energy models for graph clustering. Journal of Graph Algorithms and Applications, 11(2), 453–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Noack, A. (2009). Modularity clustering is force-directed layout. Physical Review E, 79(2), 026102.

    Article  Google Scholar 

  • Novak, T. P., Hoffman, D. L., & Yung, Y.-F. (2000). Measuring the customer experience in online environments: A structural modeling approach. Marketing Science, 19(1), 22–42.

    Article  Google Scholar 

  • Ogawa, S., & Piller, F. T. (2006). Reducing the risks of new product development. Sloan Management Review, 47(2), 65–72.

    Google Scholar 

  • Ooms, W., Bell, J., & Kok, R. A. W. (2015). Use of social media in inbound open innovation: Building capabilities for absorptive capacity. Creativity and Innovation Management, 24(1), 136–150.

    Article  Google Scholar 

  • Papagiannidis, S., & Bourlakis, M. (2015). Special issue introduction—Social media: A revolution in communication. Technological Forecasting and Social Change, 95, 1–2.

    Article  Google Scholar 

  • Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307.

    Article  Google Scholar 

  • Pielou, E. C. (1969). An introduction to mathematical ecology. New York: Wiley.

    MATH  Google Scholar 

  • Pielou, E. C. (1975). Ecological diversity (pp. 19–31). New York: Wiley.

    Google Scholar 

  • Piller, F., Vossen, A., & Ihl, C. (2012). From social media to social product development: The impact of social media on co-creation of innovation. Die Unternehmung, 65(1), 7–27.

    Article  Google Scholar 

  • Piller, F. T., & Walcher, D. (2006). Toolkits for idea competitions: a novel method to integrate users in new product development. R&D Management, 36(3), 307–318.

    Article  Google Scholar 

  • Pisano, G. R., & Verganti, R. (2009). Which kind of collaboration is right for you? Harvard BusinessReview, 86(12), 78–86.

    Google Scholar 

  • Prahalad, C. K., & Hamel, G. (1990). The core competence of the corporation. Harvard Business Review, 68(3), 79–91.

    Google Scholar 

  • Raymond, E. S. (1999). The Cathedral & the Bazaar: Musings on linux and open source by an accidental revolutionary. Sebastopol, USA: O’Reilly & Associates.

    Google Scholar 

  • Sawhney, M., & Prandelli, E. (2000). Communities of creation: Managing distributed innovatino in turbulent markets. California Management Review, 42(4), 24–54.

    Article  Google Scholar 

  • Sawhney, M., Verona, G., & Prandelli, E. (2005). Collaborating to create: The Internet as a platform for customer engagement in product innovation. Journal of Interactive Marketing, 19(4), 4–17.

    Article  Google Scholar 

  • Shah, S. K. (2006). Motivation, governance, and the viability of hybrid forms in open source software development. Management Science, 52(7), 1000–1014.

    Article  Google Scholar 

  • Shirky, C. (2008). Here comes everybody: The power of organizing without organizations. London: Penguin Books.

    Google Scholar 

  • Sidiropoulos, A., Katsaros, D., & Manolopoulos, Y. (2007). Generalized Hirsch h-index for disclosing latent facts in citation networks. Scientometrics, 72(2), 253–280.

    Article  Google Scholar 

  • Small, H. (2003). Research streams, citations, and maps of science: A personal history. Journal of the American Society for Information Science and Technology, 54(5), 394–399.

    Article  MathSciNet  Google Scholar 

  • Southwood, T. R. E., & Henderson, P. A. (2000). Ecological Methods. Hoboken: Blackwell Science.

    Google Scholar 

  • Stirling, A. (1998). On the economics and analysis of diversity. SPRU Working Paper, no. 28.

  • Thomke, S., & Von Hippel, E. (2002). Customers as innovators: A new way to create value. Harvard Business Review, 80(4), 74–81.

    Google Scholar 

  • Urban, G. L., & Von Hippel, E. (1988). Lead user analyses for the development of new industrial products. Management Science, 34(5), 569–582.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2009). How to normalize cooccurrence data? An analysis of some well-known similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635–1651.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538.

    Article  Google Scholar 

  • Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. ISSI Newsletter, 7(3), 50–54.

    Google Scholar 

  • Van Eck, N. J., Waltman, L., Noyons, E. C. M., & Buter, R. K. (2010). Automatic term identification for bibliometric mapping. Scientometrics, 82(3), 581–596.

    Article  Google Scholar 

  • Vargo, S. L., & Lusch, R. F. (2004). Evolving to a new dominant logic for marketing. Journal of Marketing, 68(1), 1–17.

    Article  Google Scholar 

  • Vogel, R. (2012). The visible colleges of management and organization studies: A bibliometric analysis of academic journals. Organization Studies, 33(8), 1015–1043.

    Article  Google Scholar 

  • Von Hippel, E. (1986). Lead users: A source of novel product concepts. Management Science, 32(7), 791–805.

    Article  Google Scholar 

  • Von Hippel, E. (1988). The sources of innovation. Oxford: Oxford University Press.

    Google Scholar 

  • Von Hippel, E. (1994). “Sticky information” and the locus of problem solving: Implications for innovation. Management Science, 40(4), 429–439.

    Article  Google Scholar 

  • Von Hippel, E. (1998). Economics of product development by users: The impact of “sticky” local information. Management Science, 44(5), 629–644.

    Article  MATH  Google Scholar 

  • Von Hippel, E. (2001). Innovation by user communities: Learning from open-source software (cover story). MIT Sloan Management Review, 42(4), 82–86.

    Google Scholar 

  • Von Hippel E. (2002). Horizontal innovation networks by and for users. Working paper, MIT Sloan School of Management.

  • Von Hippel, E. (2005). Democratizing innovation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Von Hippel, E., & Katz, R. (2002). Shifting innovation to users via toolkits. Management Science, 48(7), 821–833.

    Article  Google Scholar 

  • Von Hippel, E., & Von Krogh, G. (2003). Open source software and the “private-collective” innovation model: Issues for organization science. Organization Science, 14(2), 209–223.

    Article  Google Scholar 

  • Waltman, L., & Van Eck, N. J. (2013). A smart local moving algorithm for large-scale modularity-based community detection. European Physical Journal B, 86(11), 471.

    Article  Google Scholar 

  • Waltman, L., Van Eck, N. J., & Noyons, E. C. M. (2010). A unified approach to mapping and clustering of bibliometric networks. Journal of Informetrics, 4(4), 629–635.

    Article  Google Scholar 

  • Wasko, M. M., & Faraj, S. (2005). Why should i share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly, 29(1), 35–57.

    Google Scholar 

  • White, H. D. (2003). Pathfinder networks and author cocitation analysis: A remapping of research streamatic information scientists. Journal of the American Society for Information Science and Technology, 54(5), 423–434.

    Article  Google Scholar 

  • White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American Society for Information Science, 49(4), 327–355.

    Google Scholar 

  • Zahl, S. (1977). Jack-knifing an index of diversity. Ecology, 58(4), 907–913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Paolo Appio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Appendices

Appendix 1: Most cited articles in the set of 155 intellectual core

We identified the articles of the dataset which have been mostly cited by means of the UCINET software. The number of citations per paper was normalized by means of an algorithm that takes into account the “age” of the article (Sidiropoulos et al. 2007). This correction was needed to reduce the time penalty afflicting more recent articles:

$$S(i,t) = \frac{4}{{(t - t_{1} + 1)}}C(i,t);\quad t \ge t_{1}$$

where t 1 is the publication year of article i, C (i, t) is the number of citations for the article i at time t. Thus S (i, t) is the number of citations that article i received normalized by the coefficient 4. We identified a subset of 27 papers (about 20 % of the total), which received about 80 % of the citations. Below, the distribution of the most cited articles is reported.

Journal

# Articles

Journal

# Articles

Organization Science

4

MIT Sloan Management Review

1

J. of Product Innovation Management

3

J. of Macromarketing

1

R & D Management

3

Industrial Marketing Management

1

California Management Review

2

MIS Quarterly

1

Long Range Planning

2

Innovation Management Policy & Practice

1

Technovation

2

Technology Analysis & Strategic Management

1

J. of Management Information Systems

1

J. of Business Research

1

J. of Marketing

1

Research Policy

1

Management Science

1

Tot.

27

Appendix 2: Most co-cited references (within 155 intellectual core)

ID

Cited reference

Co-citation links

1977

franke n, 2003, res policy, v32, p155, doi 10.1016/s0048-7333(02)00006-9

45

5903

von hippel e., 2005, democratizing innova

35

2921

jeppesen lb, 2006, organ sci, v17, p45, doi 10.1287/orsc.1050.0156

34

5860

von hippel e, 2002, manage sci, v48, p821, doi 10.1287/mnsc.48.7.821.2817

31

5902

von hippel e., 1988, sources innovation

30

3373

lakhani kr, 2003, res policy, v32, p923, doi 10.1016/s0048-7333(02)00095-1

29

5861

von hippel e, 2003, organ sci, v14, p209

27

4122

muniz am, 2001, j consum res, v27, p412

26

5904

von hippel e.,2005, democratizing innova

26

3597

lilien gl, 2002, manage sci, v48, p1042, doi 10.1287/mnsc.48.8.1042.171

25

4993

sawhney m, 2005, j interact mark, v19, p4, doi 10.1002/dir.20046

25

3516

lerner j, 2002, j ind econ, v50, p197

24

4146

nambisan s, 2002, acad manage rev, v27, p392, doi 10.2307/4134386

24

1978

franke n, 2004, j prod innovat manag, v21, p401, doi 10.1111/j.0737-6782.2004.00094.x

23

2609

hertel g, 2003, res policy, v32, p1159, doi 10.1016/s0048-7333(03)00047-7

23

4990

sawhney m, 2000, calif manage rev, v42, p24

22

1062

chesbrough h., 2003, open innovation new

21

4526

piller ft, 2006, r&d manage, v36, p307, doi 10.1111/j.1467-9310.2006.00432.x

21

1181

cohen wm, 1990, admin sci quart, v35, p128, doi 10.2307/2393553

20

3890

mcalexander jh, 2002, j marketing, v66, p38, doi 10.1509/jmkg.66.1.38.18451

20

5147

shah sk, 2006, manage sci, v52, p1000, doi 10.1287/mnsc.1060.0553

20

5556

thomke s, 2002, harvard bus rev, v80, p74

20

Appendix 3: Most co-cited pairs (top 20)

IDi

Referencei*

IDj

Referencej*

161

allen t., 1984, managing flow techno

5554

thomke s, 2000, j prod innovat manag, v17, p128, doi 10.1016/s0737-6782(99)00031-4

663

bjelland o. m., 2008, mit sloan manage rev, v50, p31

1251

corrocher n, 2011, technol forecast soc, v78, p547, doi 10.1016/j.techfore.2010.10.006

2088

gallaugher j, 2010, mis q exec, v9, p197

2454

hansen mt, 2007, harvard bus rev, v85, p121

2454

hansen mt, 2007, harvard bus rev, v85, p121

3616

linder jc, 2003, mit sloan manage rev, v44, p43

663

bjelland o. m., 2008, mit sloan manage rev, v50, p31

1222

cooke m, 2008, int j market res, v50, p267

822

brown la, 1991, cytopathology, v2, p1, doi 10.1111/j.1365-2303.1991.tb00377.x

5062

schrage m., 2000, serious play worlds

1222

cooke m, 2008, int j market res, v50, p267

1251

corrocher n, 2011, technol forecast soc, v78, p547, doi 10.1016/j.techfore.2010.10.006

2454

hansen mt, 2007, harvard bus rev, v85, p121

3076

kelley sw, 1990, j retailing, v66, p315

152

alexy o, 2012, calif manage rev, v54, p116, doi 10.1525/cmr.2012.54.3.116

2454

hansen mt, 2007, harvard bus rev, v85, p121

271

aral s, 2011, manage sci, v57, p1623, doi 10.1287/mnsc.1110.1421

1502

dellarocas c, 2010, j manage inform syst, v27, p127, doi 10.2753/mis0742-1222270204

271

aral s, 2011, manage sci, v57, p1623, doi 10.1287/mnsc.1110.1421

5165

shapiro c, 1998, inform rules strateg

1502

dellarocas c, 2010, j manage inform syst, v27, p127, doi 10.2753/mis0742-1222270204

5165

shapiro c, 1998, inform rules strateg

3543

levy m, 2009, j knowl manag, v13, p120, doi 10.1108/13673270910931215

4803

riegner c, 2007, j advertising res, v47, p436, doi 10.2501/s0021849907070456

891

burt r. s., 1992, structural holes soc

3496

leonard d., 1999, sparks fly igniting

891

burt r. s., 1992, structural holes soc

5827

verona g., 2002, european management, v20, p299, doi 10.1016/s0263-2373(02)00046-4

2088

gallaugher j, 2010, mis q exec, v9, p197

3616

linder jc, 2003, mit sloan manage rev, v44, p43

4770

resnik aj, 1983, j marketing, v47, p86, doi 10.2307/3203430

5567

thompson cj, 1997, j marketing res, v34, p438, doi 10.2307/3151963

822

brown la, 1991, cytopathology, v2, p1, doi 10.1111/j.1365-2303.1991.tb00377.x

4219

nonaka i, 1998, calif manage rev, v40, p40

3543

levy m, 2009, j knowl manag, v13, p120, doi 10.1108/13673270910931215

3888

mcafee ap, 2006, mit sloan manage rev, v47, p21

3888

mcafee ap, 2006, mit sloan manage rev, v47, p21

4803

riegner c, 2007, j advertising res, v47, p436, doi 10.2501/s0021849907070456

  1. * VOSviewer reports only the first author of the extracted reference

Appendix 4: Cluster 1 “Organizational Learning”

IDCL1

ReferenceCL1*

Co-citation links

4990

sawhney m, 2000, calif manage rev, v42, p24

22

817

brown js, 1991, organ sci, v2, p40, doi 10.1287/orsc.2.1.40

14

3992

miles mb, 1994, qualitative data ana

11

5982

wasko mm, 2005, mis quart, v29, p35

11

3191

kogut b, 1992, organ sci, v3, p383, doi 10.1287/orsc.3.3.383

10

3804

march jg, 1991, organ sci, v2, p71, doi 10.1287/orsc.2.1.71

10

6188

yin r., 2003, case study res desig

10

  1. * In a cluster made of 169 references, only references with co-citations links ≥10 are reported

Appendix 5: Cluster 2 “Open and Distributed Innovation”

IDCL2

ReferenceCL2*

Co-citation links

5903

von hippel e., 2005, democratizing innova

35

5860

von hippel e, 2002, manage sci, v48, p821, doi 10.1287/mnsc.48.7.821.2817

31

4146

nambisan s, 2002, acad manage rev, v27, p392, doi 10.2307/4134386

24

1062

chesbrough h., 2003, open innovation new

21

1980

franke n, 2006, j prod innovat manag, v23, p301, doi 10.1111/j.1540-5885.2006.00203.x

17

2748

howe j., 2008, crowdsourcing why po

16

1358

dahan e, 2002, j prod innovat manag, v19, p332, doi 10.1111/1540-5885.1950332

16

2053

fuller j, 2010, calif manage rev, v52, p98

14

3433

laursen k, 2006, strategic manage j, v27, p131, doi 10.1002/smj.507

14

3200

kohler t, 2009, technovation, v29, p395, doi 10.1016/j.technovation.2008.11.004

14

2924

jeppesen lb, 2010, organ sci, v21, p1016, doi 10.1287/orsc.1090.0491

13

2920

jeppesen lb, 2005, j prod innovat manag, v22, p347, doi 10.1111/j.0737-6782.2005.00131.x

13

4628

prahalad c. k., 2004, future competition c

13

2049

fuller j, 2007, technovation, v27, p378, doi 10.1016/j.technovation.2006.09.005

12

1682

ebner w, 2009, r&d manage, v39, p342, doi 10.1111/j.1467-9310.2009.00564.x

11

4300

ogawa s, 2006, mit sloan manage rev, v47, p65

11

6044

west j, 2008, ind innov, v15, p223, doi 10.1080/13662710802033734

11

3694

luthje c, 2004, technovation, v24, p683, doi 10.1016/s0166-4972(02)00150-5

11

1375

dahlander l, 2010, res policy, v39, p699, doi 10.1016/j.respol.2010.01.013

10

2807

huston l, 2006, harvard bus rev, v84, p58

10

4742

raymond e, 1999, cathedral bazaar mus

10

  1. * In a cluster made of 239 references, only references with co-citations links ≥10 are reported. Original clusters 2 and 6 were joined forming Cluster 2

Appendix 6: Cluster 3 “Value (Co)creation”

IDCL3

ReferenceCL3*

Co-citation links

3373

lakhani kr, 2003, res policy, v32, p923, doi 10.1016/s0048-7333(02)00095-1

29

4122

muniz am, 2001, j consum res, v27, p412

26

4993

sawhney m, 2005, j interact mark, v19, p4, doi 10.1002/dir.20046

25

1978

franke n, 2004, j prod innovat manag, v21, p401, doi 10.1111/j.0737-6782.2004.00094.x

23

3890

mcalexander jh, 2002, j marketing, v66, p38, doi 10.1509/jmkg.66.1.38.18451

20

3251

kozinets rv, 2002, j marketing res, v39, p61, doi 10.1509/jmkr.39.1.61.18935

19

1943

fornell c, 1981, j marketing res, v18, p39, doi 10.2307/3151312

19

2047

fuller j, 2007, j bus res, v60, p60, doi 10.1016/j.jbusres.2006.09.019

18

2474

harhoff d, 2003, res policy, v32, p1753, doi 10.1016/s0048-7333(03)00061-1

18

2918

jeppesen lb, 2003, technol anal strateg, v15, p363, doi 10.1080/09537320310001601531

18

2065

fuller j., 2006, electronic commerce research, v6, doi 10.1007/s10660-006-5988-7

18

4123

muniz am, 2005, j consum res, v31, p737, doi 10.1086/426607

15

5797

vargo sl, 2004, j marketing, v68, p1, doi 10.1509/jmkg.68.1.1.24036

15

154

algesheimer r, 2005, j marketing, v69, p19, doi 10.1509/jmkg.69.3.19.66363

13

309

armstrong js, 1977, j marketing res, v14, p396, doi 10.2307/3150783

12

5981

wasko mm, 2000, j strategic inf syst, v9, p155

12

1210

constant d, 1996, organ sci, v7, p119, doi 10.1287/orsc.7.2.119

11

2408

hagel j., 1997, net gain expanding m

11

2680

hoffman dl, 1996, j marketing, v60, p50, doi 10.2307/1251841

11

2050

fuller j, 2008, j prod innovat manag, v25, p608, doi 10.1111/j.1540-5885.2008.00325.x

11

5017

schau hj, 2009, j marketing, v73, p30

11

4637

prahalad ck, 2000, harvard bus rev, v78, p79

10

1548

dholakia um, 2004, int j res mark, v21, p241, doi 10.1016/j.ijresmar.2003.12.004

10

402

bagozzi rp, 2006, int j res mark, v23, p45, doi 10.1016/j.ijresmar.2006.01.005

10

  1. * In a cluster made of 293 references, only references with co-citations links ≥10 are reported. Original clusters 3, 4 and 9 were joined forming Cluster 3

Appendix 7: Cluster 4 “User/Customer Involvement in Innovation Processes”

IDCL4

ReferenceCL4*

Co-citation links

1977

franke n, 2003, res policy, v32, p155, doi 10.1016/s0048-7333(02)00006-9

45

5902

von hippel e., 1988, sources innovation

30

3597

lilien gl, 2002, manage sci, v48, p1042, doi 10.1287/mnsc.48.8.1042.171

25

1181

cohen wm, 1990, admin sci quart, v35, p128, doi 10.2307/2393553

20

5556

thomke s, 2002, harvard bus rev, v80, p74

20

5719

urban gl, 1988, manage sci, v34, p569, doi 10.1287/mnsc.34.5.569

19

5858

von hippel e, 2001, j prod innovat manag, v18, p247, doi 10.1016/s0737-6782(01)00090-x

19

1714

eisenhardt km, 1989, acad manage rev, v14, p532, doi 10.2307/258557

17

4089

morrison pd, 2000, manage sci, v46, p1513, doi 10.1287/mnsc.46.12.1513.12076

15

5869

von hippel e,1986, manage sci, v32, p791, doi 10.1287/mnsc.32.7.791

15

2603

herstatt c, 1992, j prod innovat manag, v9, p213, doi 10.1016/0737-6782(92)90031-7

14

5925

vonhippel e, 1986, manage sci, v32, p791, doi 10.1287/mnsc.32.7.791

13

5856

von hippel e, 1998, manage sci, v44, p629, doi 10.1287/mnsc.44.5.629

12

5926

vonhippel e, 1994, manage sci, v40, p429, doi 10.1287/mnsc.40.4.429

12

2355

gruner ke, 2000, j bus res, v49, p1, doi 10.1016/s0148-2963(99)00013-2

11

1976

franke n, 2003, res policy, v32, p1199, doi 10.1016/s0048-7333(03)00049-0

10

5881

von hippel e,1994, manage sci, v40, p429, doi 10.1287/mnsc.40.4.429

10

6192

yin rk, 1994, case study res desig

10

  1. * In a cluster made of 155 references, only references with co-citations links ≥10 are reported. Original clusters 5 and 11 were joined forming Cluster 5

Appendix 8: Cluster 5 “Knowledge Sharing in Communities”

IDCL5

ReferenceCL5*

Co-citation links

2921

jeppesen lb, 2006, organ sci, v17, p45, doi 10.1287/orsc.1050.0156

34

5861

von hippel e, 2003, organ sci, v14, p209

27

5904

von hippel e.,2005, democratizing innova

26

3516

lerner j, 2002, j ind econ, v50, p197

24

2609

hertel g, 2003, res policy, v32, p1159, doi 10.1016/s0048-7333(03)00047-7

23

5147

shah sk, 2006, manage sci, v52, p1000, doi 10.1287/mnsc.1060.0553

20

5914

von krogh g, 2006, manage sci, v52, p975, doi 10.1287/mnsc.1060.0560

13

2491

hars a, 2002, int j electron comm, v6, p25

12

4090

morrison pd, 2004, res policy, v33, p351, doi 10.1016/j.respol.2003.09.007

11

  1. * In a cluster made of 155 references, only references with co-citations links ≥10 are reported. Original clusters 7, 10 and 12 were joined forming Cluster 6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appio, F.P., Martini, A., Massa, S. et al. Unveiling the intellectual origins of Social Media-based innovation: insights from a bibliometric approach. Scientometrics 108, 355–388 (2016). https://doi.org/10.1007/s11192-016-1955-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-1955-9

Keywords

Mathematics Subject Classification

JEL Classification

Navigation