[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The queue length in an M/G/1 batch arrival retrial queue

  • Published:
Queueing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An M/G/1 retrial queue with batch arrivals is studied. The queue length K μ is decomposed into the sum of two independent random variables. One corresponds to the queue length K of a standard M/G/1 batch arrival queue, and another is compound-Poisson distributed. In the case of the distribution of the batch size being light-tailed, the tail asymptotics of K μ are investigated through the relation between K and its service times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer, New York (2003)

    Google Scholar 

  2. Asmussen, S., Klüppelberg, C., Sigman, K.: Sampling at subexponential times, with queueing applications. Stoch. Process. Appl. 79, 265–286 (1999)

    Article  Google Scholar 

  3. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  4. Cohen, J.W.: On a single-server queue with group arrivals. J. Appl. Probab. 13, 619–622 (1976)

    Article  Google Scholar 

  5. Cline, D.B.H.: Convolution tails, product tails and domains of attraction. Probab. Theory Relat. Fields 72, 529–557 (1986)

    Article  Google Scholar 

  6. Embrechts, P., Goldie, C.M., Veraverbeke, N.: Subexponentiality and infinite divisibility. Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 335–347 (1979)

    Article  Google Scholar 

  7. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Springer, Berlin, (1999)

    Google Scholar 

  8. Falin, G.I.: On a multiclass batch arrival retrial queue. Adv. Appl. Probab. 20, 483–487 (1988)

    Article  Google Scholar 

  9. Falin, G.I.: A survey of retrial queues. Queueing Syst. 7, 127–167 (1990)

    Article  Google Scholar 

  10. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman & Hall, London (1997)

    Google Scholar 

  11. Gaver, D.P. Jr.: Imbedded Markov chain analysis of a waiting-line process in continuous time. Ann. Math. Stat. 30, 698–720 (1959)

    Article  Google Scholar 

  12. Haji, R., Newell, G.F.: A relation between stationary queue and waiting time distributions. J. Appl. Probab. 8, 617–620 (1971)

    Article  Google Scholar 

  13. Klüppelberg, C.: Subexponential distributions and characterizations of related classes. Probab. Theory Relat. Fields 82, 259–269 (1989)

    Article  Google Scholar 

  14. Klüppelberg, C.: Asymptotic ordering of distribution functions on convolution semigroup. Semigroup Forum 40, 77–92 (1990)

    Article  Google Scholar 

  15. Klukarni, V.G.: Expected waiting times in a multiclass batch arrival retrial queue. J. Appl. Probab. 23, 144–154 (1986)

    Article  Google Scholar 

  16. Li, Q.-L.: Constructive Computation in Stochastic Models with Applications: The RG-Factorization. Tsinghua University Press/Springer, Beijing/Berlin (2010)

    Book  Google Scholar 

  17. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  18. Shang, W., Liu, L., Li, Q.-L.: Tail asymptotics for the queue length in an M/G/1 retrial queue. Queueing Syst. 52, 193–198 (2006)

    Article  Google Scholar 

  19. Shimura, T., Watanabe, T.: Infinite divisibility and generalized subexponentiality. Bernoulli 11, 445–469 (2005)

    Article  Google Scholar 

  20. van Ommeren, J.C.W.: Exponential expansion for the tail of the waiting-time probability in the single-server queue with batch arrivals. Adv. Appl. Probab. 20, 880–895 (1988)

    Article  Google Scholar 

  21. Yang, T., Templeton, J.G.C.: A survey on retrial queues. Queueing Syst. 2, 201–233 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouji Yamamuro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamuro, K. The queue length in an M/G/1 batch arrival retrial queue. Queueing Syst 70, 187–205 (2012). https://doi.org/10.1007/s11134-011-9268-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-011-9268-4

Keywords

Mathematics Subject Classification (2010)

Navigation