[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Analyzing retrial queues by censoring

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

In this paper we analyze the M/M/c retrial queue using the censoring technique. This technique allows us to carry out an asymptotic analysis, which leads to interesting and useful asymptotic results. Based on the asymptotic analysis, we develop two methods for obtaining approximations to the stationary probabilities, from which other performance metrics can be obtained. We demonstrate that the two proposed approximations are good alternatives to existing approximation methods. We expect that the technique used here can be applied to other retrial queueing models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artalejo, J.R.: Accessible bibliography on retrial queues. Math. Comput. Model. 30(3–4), 1–6 (1999)

    Article  Google Scholar 

  2. Artalejo, J.R., Gómez-Corral, A.: Retrial Queueing Systems. Springer, Berlin, Heidelberg (2008)

    Book  Google Scholar 

  3. Artalejo, J.R., Pozo, M.: Numerical calculation of the stationary distribution of the main multiserver retrial queue. Ann. Oper. Res. 116, 41–56 (2002)

    Article  Google Scholar 

  4. Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Stoch. Models 11, 497–525 (1995)

    Article  Google Scholar 

  5. Bright, L., Taylor, P.G.: Equilibrium distribution for level-dependent quasi-birth-and-death processes. In: Chakravarthy, S.R., Alfa, A.S. (eds.) Matrix-Analysis Methods in Stochastic Models, pp. 359–375. CRC Press, Boca Raton (1997)

    Google Scholar 

  6. Cohen, J.W.: Basic problems of telephone traffic theory and the influence of repeated calls. Philips Telecomm. Rev. 18, 49–100 (1957)

    Google Scholar 

  7. Falin, G.I.: A survey of retrial queues. Queueing Syst. 7, 127–167 (1990)

    Article  Google Scholar 

  8. Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman & Hall, London (1997)

    Google Scholar 

  9. Fredericks, A.A., Reisner, G.A.: Approximations to stochastic service systems, with an application to a retrial model. Bell Syst. Tech. J. 58, 557–576 (1979)

    Google Scholar 

  10. Gómez-Corral, A.: A bibliographical guide to the analysis of retrial queues through matrix-analytic techniques. Ann. Oper. Res. 141(1), 163–191 (2006)

    Article  Google Scholar 

  11. Gómez-Corral, A., Ramalhoto, M.F.: The stationary distribution of a Markovian process arising in the theory of multiserver retrial queueing systems. Math. Comput. Model. 30(3–4), 141–158 (1999)

    Article  Google Scholar 

  12. Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov Chains, 2nd edn. Van Nostrand, Princeton (1966)

    Google Scholar 

  13. Kim, B., Kim, J.: Tail asymptotics for the queue size distribution in a discrete-time Geo/G/1 retrial queue. Queueing Syst. 61, 243–254 (2009)

    Article  Google Scholar 

  14. Kim, B., Kim, J.: Queue size distribution in a discrete-time D-BMAP/G/1 retrial queue. Comput. Oper. Res. 37(7), 1220–1227 (2010)

    Article  Google Scholar 

  15. Kim, J., Kim, B., Ko, S.-S.: Tail asymptotics for the queue size distribution in an M/G/1 retrial queue. J. Appl. Probab. 44(4), 1111–1118 (2007)

    Article  Google Scholar 

  16. Kim, Y.C.: On M/M/3/3 retrial queueing system. Honam Math. J. 17, 141–147 (1995)

    Google Scholar 

  17. Kulkarni, V.G., Liang, H.M.: Retrial queues revisited. In: Dshalalow, J.H. (ed.) Frontiers in Queueing: Models and Applications in Science and Engineering, pp. 19–34. CRC Press, Boca Raton (1996)

    Google Scholar 

  18. Latouche, G., Ramaswami, V.: Introduction to Matrix Analytic Methods in Stochastic Modeling. SIAM, Philadelphia (1999)

    Google Scholar 

  19. Neuts, M.F., Rao, B.M.: Numerical investigation of multi-server retrial model. Queueing Syst. 7(2), 169–190 (1990)

    Article  Google Scholar 

  20. Stepanov, S.N.: Markov models with retrials: The calculation of stationary performance measures based on the concept of truncation. Math. Comput. Model. 30(3–4), 207–228 (1999)

    Article  Google Scholar 

  21. Wolff, R.W.: Stochastic Modeling and the Theory of Queues. Prentice-Hall, New York (1989)

    Google Scholar 

  22. Yang, T., Templeton, J.G.C.: A survey on retrial queues. Queueing Syst. 2, 201–233 (1987)

    Article  Google Scholar 

  23. Zhao, Y.Q.: Censoring technique in studying block-structured Markov chains. In: Latouche, G., Taylor, P. (eds.) Advances in Algorithmic Methods for Stochastic Models, pp. 417–433. Notable Publications Inc., Neshanic Station (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiqiang Q. Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Zhao, Y.Q. Analyzing retrial queues by censoring. Queueing Syst 64, 203–225 (2010). https://doi.org/10.1007/s11134-009-9163-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-009-9163-4

Keywords

Mathematics Subject Classification (2000)

Navigation