Abstract
Quantum image processing is one of the most active fields in quantum computation and quantum information processing. Some concepts of quantum images and transformations have emerged in recent years. This paper proposes a quantum algorithm to scale up quantum images based on nearest-neighbor interpolation with integer scaling ratio. Firstly, the novel enhanced quantum representation is improved to the generalized quantum image representation to represent a quantum image with arbitrary size \(H \times W\). Then, nearest-neighbor interpolation is used to create new pixels in the enlarged images. Based on them, quantum image scaling up algorithms in the form of circuits are proposed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)
Vlatko, V., Adriano, B., Artur, E.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)
Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proceedings of the SPIE Conference on Quantum Information and Computation, pp. 137–147 (2003)
Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)
Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)
Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)
Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)
Sun, B., Iliyasu, A.M., Yan, F., Dong, F.Y., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)
Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)
Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)
Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)
Li, H.S., Zhu, Q.X., Lan, S., Shen, C.Y., Zhou, R.G., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)
Li, H.S., Zhu, Q.X., Zhou, R.G., Lan, S., Yang, X.J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)
Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quantum Inf. Process. 14(5), 1589–1604 (2015)
Gonzalez, R., Woods, R.: Digital Image Processing, 3rd edn. Prentice Hall, New Jersey (2007)
http://www.mathworks.cn/cn/help/images/ref/imresize.html (2014)
Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)
Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)
Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)
Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)
Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)
Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(4), 793–803 (2013)
Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theory Phys. 52, 504–513 (2013)
Yang, Y.G., Jia, X., Xu, P., Tian, J.: Analysis and improvement of the watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(8), 2765–2769 (2013)
Song, X.H., Wang, S., Liu, S., El-Latif, Ahmed A.Abd, Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)
Song, X.H., Wang, S., Liu, S., El-Latif, Ahmed. A. Abd., Niu, X.M.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)
Jiang, N., Wang, L.: A quantum image information hiding algorithm based on Moir\(\acute{e}\) pattern. Int. J. Theor. Phys. 54(3), 1021–1032 (2015)
Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Adv. Intell. Syst. Comput. 298, 243–250 (2014)
Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)
Zhou, Ri-Gui, Wu, Qian, Zhang, Man-Qun, et al.: A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recognit. 321, 480–487 (2012)
Zhou, Ri-Gui, Wu, Qian, Zhang, Man-Qun, et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)
Yuen, H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113(8), 405–407 (1986)
Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Iliyasu, A.M., Le, P.Q., Dong, F.Y., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quantum Inf. 9(6), 1459–1497 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by the Fundamental Research Funds for the Central Universities under Grants No. 2015JBM027 and the National Scholarship under Grants Nos. 201406545034 and 201507095087.
Rights and permissions
About this article
Cite this article
Jiang, N., Wang, J. & Mu, Y. Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf Process 14, 4001–4026 (2015). https://doi.org/10.1007/s11128-015-1099-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-015-1099-5