[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

\(H_{\infty }\) Filtering for Markov Jump Neural Networks Subject to Hidden-Markov Mode Observation and Packet Dropouts via an Improved Activation Function Dividing Method

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper is devoted to investigating the \(H_{\infty }\) filtering problem for Markov jump neural networks with hidden-Markov mode observation and packet dropouts, in which the information regarding to the Markov state can not be completely acquired. To address this circumstance, a hidden Markov model (HMM)-based technique is established. That is employing a detector to detect the information of the Markov state and then giving an estimated signal of the Markov state for the filter design. Some \(H_{\infty }\) performance analysis criteria for filtering error systems and the corresponding HMM-based filter design procedure are given. An improved activation function dividing method (AFDM) is presented for neural networks to reduce the conservatism of the obtained results. The superiority of the improved AFDM and the validity of obtained results are verified by an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arik S (2000) Stability analysis of delayed neural networks. IEEE Trans Circuits Syst I Fund Theory Appl 47(7):1089–1092

    MathSciNet  MATH  Google Scholar 

  2. Cheng J, Park J, Cao J, Qi W (2019) Hidden Markov model-based nonfragile state estimation of switched neural network with probabilistic quantized outputs. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2909748

    Article  Google Scholar 

  3. Wang Z, Liu Y, Fraser K, Liu X (2006) Stochastic stability of uncertain hopfield neural networks with discrete and distributed delays. Phys Lett A 354(4):288–297

    MATH  Google Scholar 

  4. Ahn CK (2013) State estimation for T–S fuzzy hopfield neural networks via strict output passivation of the error system. Int J General Syst 42(5):503–518

    MathSciNet  MATH  Google Scholar 

  5. Manivannan R, Samidurai R, Zhu Q (2017) Further improved results on stability and dissipativity analysis of static impulsive neural networks with interval time-varying delays. J Frankl Inst 354(14):6312–6340

    MathSciNet  MATH  Google Scholar 

  6. Lu J, Kurths J, Cao J, Mahdavi N, Huang C (2012) Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans Neural Netw Learn Syst 23(2):285–292

    Google Scholar 

  7. Yang X, Cao J, Yang Z (2013) Synchronization of coupled reaction–diffusion neural networks with time-varying delays via pinning-impulsive controller. SIAM J Control Optim 51(5):3486–3510

    MathSciNet  MATH  Google Scholar 

  8. Hu J, Wang Z, Alsaadi FE, Hayat T (2017) Event-based filtering for time-varying nonlinear systems subject to multiple missing measurements with uncertain missing probabilities. Inform Fusion 38:74–83

    Google Scholar 

  9. Zhang L, Yang T, Shi P, Zhu Y (2016) Analysis and design of Markov jump systems with complex transition probabilities. Springer, Berlin

    MATH  Google Scholar 

  10. Shen H, Men Y, Cao J, Park J (2020) \({\cal{H}}_{\infty }\) filtering for fuzzy jumping genetic regulatory networks with round-robin protocol: a hidden-Markov-model-based approach. IEEE Trans Fuzzy Syst 28(1):112–121

    Google Scholar 

  11. Qi W, Zong G, Karimi H (2018) Observer-based adaptive SMC for nonlinear uncertain singular semi-Markov jump systems with applications to DC motor. IEEE Trans Circuits Syst I Reg Papers 65(9):2951–2960

    MathSciNet  Google Scholar 

  12. Cheng J, Zhang D, Qi W, Cao J, Shi K (2019) Finite-time stabilization of T–S fuzzy semi-Markov switching systems: a coupling memory sampled-data control approach. J Frankl Inst. https://doi.org/10.1016/j.jfranklin.2019.06.021

    Article  Google Scholar 

  13. Shen H, Chen M, Wu Z, Cao J, Park J (2019) Reliable event-triggered asynchronous passive control for semi-Markov jump fuzzy systems and its application. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2019.2921264

    Article  Google Scholar 

  14. Cheng J, Park J, Zhao X, Cao J, Qi W (2019) Static output feedback control of switched systems with quantization: a nonhomogeneous sojourn probability approach. Int J Robust Nonlinear Control 29(17):5992–6005

    MathSciNet  MATH  Google Scholar 

  15. Su L, Ye D (2017) Mixed \(H_{\infty }\) and passive event-triggered reliable control for T–S fuzzy Markov jump systems. Neurocomputing 281:96–105

    Google Scholar 

  16. Vargas AN, Pujol G, Acho L (2016) Stability of Markov jump systems with quadratic terms and its application to RLC circuits. J Frankl Inst 354(1):332–344

    MathSciNet  MATH  Google Scholar 

  17. Shen H, Huang Z, Cao J, Park J (2019) Exponential \({\cal{H}}_{\infty }\) filtering for continuous-time switched neural networks under persistent dwell-time switching regularity. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2901867

    Article  Google Scholar 

  18. Shen H, Li F, Xu S, Sreeram V (2018) Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans Autom Control 63(8):2709–2714

    MathSciNet  MATH  Google Scholar 

  19. Shen H, Jiao S, Huang T, Cao J (2019) An improved result on sampled-data synchronization of Markov jump delayed neural networks. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2019.2931533

    Article  Google Scholar 

  20. Shen H, Huo S, Yan H, Park J, Sreeram V (2019) Distributed dissipative state estimation for Markov jump genetic regulatory networks subject to round-robin scheduling. Neural Netw IEEE Trans Learn Syst. https://doi.org/10.1109/TNNLS.2019.2909747

    Article  Google Scholar 

  21. Li Q, Zhu Q, Zhong S, Zhong F (2017) Extended dissipative state estimation for uncertain discrete-time markov jump neural networks with mixed time delays. ISA Trans 66:200–208

    Google Scholar 

  22. Shi P, Zhang Y, Chadli M, Agarwal RK (2016) Mixed H-infinity and passive filtering for discrete fuzzy neural networks with stochastic jumps and time delays. IEEE Trans Neural Netw Learn Syst 27(4):903–909

    MathSciNet  Google Scholar 

  23. Li Y, Deng F, Li G, Jiao L (2018) Robust \(H_{\infty }\) filtering for uncertain discrete-time stochastic neural networks with Markovian jump and mixed time-delays. Int J Mach Learn Cyber 9:1377–1386

    Google Scholar 

  24. Li F, Shen H, Chen M, Kong Q (2015) Non-fragile finite-time \(l_{2}\)-\(l_{\infty }\) state estimation for discrete-time Markov jump neural networks with unreliable communication links. Appl Math Comput 271:467–481

    MathSciNet  MATH  Google Scholar 

  25. Ren J, Liu X, Zhu H, Zhong S, Shi K (2016) State estimation of neural networks with two Markovian jumping parameters and multiple time delays. J Frankl Inst 354(2):812–833

    MathSciNet  MATH  Google Scholar 

  26. Wang J, Xing M, Sun Y, Li J, Lu J (2019) Event-triggered dissipative state estimation for Markov jump neural networks with random uncertainties. J Frankl Inst 356(17):10155–10178

    MathSciNet  MATH  Google Scholar 

  27. Wu ZG, Shi P, Su H, Chu J (2014) Asynchronous \(l_{2}\)-\(l_{\infty }\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50(1):180–186

    MathSciNet  MATH  Google Scholar 

  28. Zhang L, Zhu Y, Shi P, Zhao Y (2015) Resilient asynchronous \(H_{\infty }\) filtering for Markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans Cybern 45(12):2840–2852

    Google Scholar 

  29. Wang J, Li F, Shen H, Sun Y (2016) On asynchronous \(l_{2}\)-\(l_{\infty }\) filtering for networked fuzzy systems with Markov jump parameters over a finite-time interval. IET Control Theory Appl 10(17):2175–2185

    MathSciNet  Google Scholar 

  30. Costa OLdV, Fragoso MD, Todorov MG (2015) A detector-based approach for the \(H_{2}\) control of Markov jump linear systems with partial information. IEEE Trans Autom Control 47(3):1219–1234

    MATH  Google Scholar 

  31. Wu ZG, Shi P, Shu Z, Su H, Lu R (2017) Passivity-based asynchronous control for Markov jump systems. IEEE Trans Autom Control 62(4):2020–2025

    MathSciNet  MATH  Google Scholar 

  32. Wu ZG, Dong S, Su H, Li C (2018) Asynchronous dissipative control for fuzzy Markov jump systems. IEEE Trans Cybern 48(8):2426–2436

    Google Scholar 

  33. Song J, Niu Y, Zou Y (2018) Asynchronous sliding mode control of Markovian jump systems with time-varying delays and partly accessible mode detection probabilities. Automatica 93:33–41

    MathSciNet  MATH  Google Scholar 

  34. Oliveira AMD, Costa OLdV (2017) \(H_{\infty }\)-filtering for Markov jump linear systems with partial information on the jump parameter. IFAC J Syst Control 1:13–23

    Google Scholar 

  35. Li F, Xu S, Zhang B (2018) Resilient asynchronous \(H_{\infty }\) control for discrete-time Markov jump singularly perturbed systems based on hidden Markov model. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2837888

    Article  Google Scholar 

  36. Cheng J, Ahn CK, Karimi HR, Cao J, Qi W (2018) An event-based asynchronous approach to Markov jump systems with hidden mode detections and missing measurements. IEEE Trans Syst Man Cybern Syst 49(9):1749–1758

    Google Scholar 

  37. Li F, Xu S, Shen H (2019) Fuzzy-model-based \(H_{\infty }\) control for Markov jump nonlinear slow sampling singularly perturbed systems with partial information. IEEE Trans Fuzzy Syst 27(10):1952–1962

    Google Scholar 

  38. Song J, Niu Y, Xu J (2018) An event-triggered approach to sliding mode control of Markovian jump lur’e systems under hidden mode detections. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2018.2847315

    Article  Google Scholar 

  39. Song J, Niu Y, Zou Y (2017) Asynchronous output feedback control of time-varying Markovian jump systems within a finite-time interval. J Frankl Inst 354(15):6747–6765

    MathSciNet  MATH  Google Scholar 

  40. Li F, Song S, Zhao J, Xu S, Zhang Z (2019) Synchronization control for Markov jump neural networks subject to hmm observation and partially known detection probabilities. Appl Math Comput 360:1–13

    MathSciNet  MATH  Google Scholar 

  41. Tao J, Wu ZG, Su H, Wu Y, Zhang D (2018) Asynchronous and resilient filtering for Markovian jump neural networks subject to extended dissipativity. IEEE Trans Cybern 49(7):2504–2513

    Google Scholar 

  42. Shen Y, Wu ZG, Shi P, Su H, Huang T (2018) Asynchronous filtering for Markov jump neural networks with quantized outputs. IEEE Trans Syst Man Cybern Syst 49(2):433–443

    Google Scholar 

  43. Kwon OM, Park MJ, Lee SM, Park JH, Cha EJ (2013) Stability for neural networks with time-varying delays via some new approaches. IEEE Trans Neural Netw Learn Syst 24(2):181–193

    Google Scholar 

  44. Lee TH, Park MJ, Park JH, Kwon OM, Lee SM (2014) Extended dissipative analysis for neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 25(10):1936–1941

    Google Scholar 

  45. Shi K, Liu X, Tang Y, Zhu H, Zhong S (2016) Some novel approaches on state estimation of delayed neural networks. Inf Sci 372:313–331

    MATH  Google Scholar 

  46. Hu J, Wang Z, Gao H (2018) Joint state and fault estimation for time-varying nonlinear systems with randomly occurring faults and sensor saturations. Automatica 97:150–160

    MathSciNet  MATH  Google Scholar 

  47. Zhang H, Hu J, Liu H, Yu X, Liu F (2019) Recursive state estimation for time-varying complex networks subject to missing measurements and stochastic inner coupling under random access protocol. Neurocomputing 346:48–57

    Google Scholar 

  48. Lin X, Chen C, Qian C (2017) Smooth output feedback stabilization of a class of planar switched nonlinear systems under arbitrary switchings. Automatica 80:314–318

    MathSciNet  MATH  Google Scholar 

  49. Ding S, Mei K, Li S (2019) A new second-order sliding mode and its application to nonlinear constrained systems. IEEE Trans Autom Control 64(6):2545–2552

    MathSciNet  MATH  Google Scholar 

  50. Du H, Qian C, Li S, Chu Z (2019) Global sampled-data output feedback stabilization for a class of uncertain nonlinear systems. Automatica 99(1):403–411

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Natural Science Foundation of China (Nos. 61602008, 61873002, 61703004, 61503002, 61673339, 61573201), the National Natural Science Foundation of Anhui Province (No.1708085MF165), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX18_0427).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zhao, J., Song, S. et al. \(H_{\infty }\) Filtering for Markov Jump Neural Networks Subject to Hidden-Markov Mode Observation and Packet Dropouts via an Improved Activation Function Dividing Method. Neural Process Lett 51, 1939–1955 (2020). https://doi.org/10.1007/s11063-019-10175-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-019-10175-w

Keywords

Navigation