[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Biochar and forest restoration: a review and meta-analysis of tree growth responses

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

“Biochar”, or charcoal intended for use as a soil amendment, has received great attention in recent years as a means of enhancing carbon sequestration and soil properties in agricultural systems. Here we address the potential for biochar use in the context of forest restoration, reviewing relevant experimental studies on biochar use in forest ecosystems, the properties of chars generated from wood waste material, and available data on tree growth responses to biochar. To our knowledge the earliest mention of char use as a soil amendment is actually specifically in the context of forest restoration (in the 1820s in Scotland). Wood waste biochars have an unusual set of properties that suggest their applicability in a forest restoration context: namely, high recalcitrance promoting long-lasting effects, retention of cations, anions, and water, in the soil, sorptive properties that can reduce bioavailability of a wide range of toxic materials, and relative ease of production from locally available feedstocks. A meta-analysis of recent studies on biochar responses of woody plants indicates a potential for large tree growth responses to biochar additions, with a mean 41 % increase in biomass. Responses are especially pronounced at early growth stages, and appear to be higher in boreal and tropical than in temperate systems, and in angiosperms than conifers; however, there is high variability, and field studies are few. The properties of biochars also vary greatly depending on feedstock and pyrolysis conditions; while this complicates their use, it provides a means to design biochars for specific restoration situations and objectives. We conclude that there is great promise for biochar to play an important role in a wide variety of forest restoration efforts, specifically as a replacement product for other forms of organic matter and liming agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Baker LL, Strawn DG, Rember WC, Sprenke KF (2011) Metal content of charcoal in mining-impacted wetland sediments. Sci Total Environ 409:588–594

  • Bastos AC, Prodana M, Abrantes N, Keizer JJ, Soares AMVM, Loureiro S (2014) Potential risk of biochar-amended soil to aquatic systems: an evaluation based on aquatic bioassays. Ecotoxicology 23:1784–1793

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability, and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T, Clemente R, Dawson JJ (2014)  Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

  • Bernal MP, Sanchez-Monedero MA, Paredes C, Roig A (1998) Carbon mineralization from organic wastes at different composting stages during their incubation with soil. Agric Ecosys Environ 69:175–189

    Article  CAS  Google Scholar 

  • Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214

    Article  CAS  Google Scholar 

  • Blackmore AC, Mentis MT, Scholes RJ (1990) The origin and extent of nutrient-enriched patches within a nutrient-poor savannah in South Africa. J Biogeogr 17:463–470

    Article  Google Scholar 

  • Bolan NS, Kunhikrishnan A, Choppala GK, Thangarajan R, Chung JW (2012) Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility. Sci Total Environ 424:264–270

  • Borchard N, Prost K, Kautz T, Moeller A, Siemens J (2012) Sorption of copper (II) and sulphate to different biochars before and after composting with farmyard manure. Eur J Soil Sci 63:399–409

  • Brais S, David P, Ouimet R (2000) Impacts of wild fire severity and salvage harvesting on the nutrient balance of jack pine and black spruce boreal stands. For Ecol Manage 137:231–243

    Article  Google Scholar 

  • Brewer CE, Unger R, Schmidt-Rohr K, Brown RC (2011) Criteria to select biochars for field studies based on biochar chemical properties. Bioenergy Res 4:312–323

    Article  Google Scholar 

  • Budi SW, Setyaningsih L (2013) Arbuscular mycorrhizal fungi and biochar improved early growth of Neem (Melia azedarach Linn.) seedling under Greenhouse conditions. Jurnal Manajemen Hutan Tropika 19:103–110

    Google Scholar 

  • Buss W, Kammann C, Koyro HW (2011) Biochar reduces copper toxicity in Chenopodium quinoa Willd. in a sandy soil. J Env Qual 40:1–9

    Article  Google Scholar 

  • Busscher W, Novak J, Ahmedna M (2003) Biochar addition to a southeastern USA coastal sand to decrease soil strength and improve soil quality. Proceedings of the ISTRO 18th triennial conference. Izmir, Turkey, pp 15–19

    Google Scholar 

  • Chidumayo EN (1994) Effects of wood carbonization on soil and initial development of seedlings in miombo woodland, Zambia. For Ecol Manage 70:353–357

    Article  Google Scholar 

  • Coomes DA, Allen RB, Bentley WA, Burrows LE, Canham CD, Fagan L, Forsyth DM, Gaxiola-Alcantar A, Parfitt RL, Ruscoe WA, Wardle DA, Wilson DJ, Wright EF (2005) The hare, the tortoise and the crocodile: the ecology of angiosperm dominance, conifer persistence and fern filtering. J Ecol 93:918–935

    Article  Google Scholar 

  • Core Team R (2012) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Crane-Droesch A, Abiven S, Jeffery S, Torn MS (2013) Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environ Res Lett 8:044049

    Article  Google Scholar 

  • DeLuca T, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci Soc Am J 70:448–453

    Article  CAS  Google Scholar 

  • Enders A, Hanley K, Whitman T, Joseph S, Lehmann J (2012) Characterization of biochars to evaluate recalcitrance and agronomic performance. Biores Technol 114:644–653

    Article  CAS  Google Scholar 

  • Eyles A, Bound S, Oliver G, Paterson S, Direen J, Corkrey R, Hardie M, Green S, Clothier B, Close D (2013) Does biochar improve apple productivity? Aust Fruitgrower 2013:32–34

    Google Scholar 

  • Fagbenro JA, Oshunsanya SO, Onawumi OA (2013) Effect of saw dust biochar and NPK 15:15:15 inorganic fertilizer on Moringa oleifera seedlings grown in an oxisol. Agrosearch 13:57–68

    Article  Google Scholar 

  • Fairhead J, Leach M (2009) Amazonian dark earths in Africa? In: Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins AMGA, Rebellato L (eds) Amazonian dark earths: Wim Sombroek’s vision. Springer, Dordrecht, pp 265–278

  • Ghosh S, Ow LF, Wilson B (2015) Influence of biochar and compost on soil properties and tree growth in a tropical urban environment. Int J Environ Sci Technol 12:1303–1310

    Article  CAS  Google Scholar 

  • Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim et Cosmochim Acta 82:39–51

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  PubMed  Google Scholar 

  • Gradowski T, Thomas SC (2006) Phosphorus limitation of sugar maple growth in central Ontario. For Ecol Manage 226:104–109

    Article  Google Scholar 

  • Gradowski T, Thomas SC (2008) Responses of Acer saccharum canopy trees and saplings to P, K and lime additions under high N deposition. Tree Physiol 28:173–185

    Article  CAS  PubMed  Google Scholar 

  • Graham E (2006) A Neotropical framework for terra preta. In: Balee W, Erickson CL (eds) Time and complexity in historical ecology—studies in the neotropical lowlands. Columbia University Press, New York, pp 57–86

    Google Scholar 

  • Gurevitch J, Curtis PS, Jones MH (2001) Meta-analysis in ecology. Adv Ecol Res 32:199–247

    Article  CAS  Google Scholar 

  • Hart S, Luckai N (2013) Charcoal function and management in boreal ecosystems. J Appl Ecol 50:1197–1206

    CAS  Google Scholar 

  • Headlee WL, Brewer CE, Hall RB (2014) Biochar as a substitute for vermiculite in potting mix for hybrid poplar. Bioenergy Res 7:120–131

    Article  CAS  Google Scholar 

  • Hecht SB (2003) Indigenous soil management and the creation of Amazonian Dark Earths: implications of the Kayapó practices. In: Lehmann J et al (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic Publishers, Dodrecht, pp 355–372

    Google Scholar 

  • Heckenberger MJ, Kuikuro A, Kuikuro UT, Russell CJ, Schmidt M, Fausto C, Franchetto B (2003) Amazonia 1492: pristine forest or cultural parkland? Science 301:1710–1713

    Article  CAS  PubMed  Google Scholar 

  • Heiskanen J, Tammeorg P, Dumroese RK (2013) Growth of Norway spruce seedlings after transplanting into silty soil amended with biochar: a bioassay in a growth chamber—short communication. J For Sci 59:125–129

    Google Scholar 

  • International Biochar Initiative (2014) Standardized product definition and product testing guidelines for biochar that is used in soil, version 2.0. http://www.biochar-international.org/sites/default/files/IBI_Biochar_Standards_V2%200_final_2014.pdf (accessed 4 Apr 2015)

  • Jauss V, Johnson M, Krull E, Daub M, Lehmann J (2015) Pyrogenic carbon controls across a soil catena in the Pacific Northwest. Catena 124:53–59

    Article  CAS  Google Scholar 

  • Jeffery S, Verheijen FGA, Van Der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosys Environ 144:175–187

    Article  Google Scholar 

  • Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515

  • Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek M, Soja G (2012) Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J Env Qual 41:990–1000

    Article  CAS  Google Scholar 

  • Kołtowski M, Oleszczuk P (2015) Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment. Ecol Engin 75:79–85

    Article  Google Scholar 

  • Krull E, Lehmann J, Skjemstad J (2008) The global extent of black C in soils: is it everywhere? In: Schröder HG (ed) Grasslands: ecology, management and restoration. Nova Science Publishers, New York, pp 13–17

    Google Scholar 

  • Kuhlbusch T, Andreae MO, Cachier H, Goldammer JG, Lacaux JP, Shea R, Crutzen PJ (1996) Black carbon formation by savanna fires: measurements and implications for the global carbon cycle. J Geophys Res Atm 101:23651–23665

    Article  CAS  Google Scholar 

  • Laird DA, Fleming P, Davis D, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449

    Article  CAS  Google Scholar 

  • Lehmann J (2007a) A handful of carbon. Nature 447:143–144

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J (2007b) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Lehmann J,  Joseph S (eds) (2009) Biochar for environmental management: science and technology. Earthscan, London

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373:583–594

    Article  CAS  Google Scholar 

  • Lusk CH (2011) Conifer-angiosperm interactions: physiological ecology and life history. In: Turner BL, Cernusak LA (eds) Ecology of tropical podocarps. Smithsonian Institution Press, Smithsonian Contributions to Botany, Washington, DC, pp 157–164

    Google Scholar 

  • Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil 333:117–128

    Article  CAS  Google Scholar 

  • Makoto K, Makoto K, Tamai Y, Kim YS, Koike T (2010) Buried charcoal layer and ectomycorrhizae cooperatively promote the growth of Larix gmelinii seedlings. Plant Soil 327:143–152

    Article  CAS  Google Scholar 

  • Mao JD, Mao JD, Johnson RL, Lehmann J, Olk DC, Neves EG, Thompson ML, Schmidt-Rohr K (2012) Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration. Env Sci Technol 46:9571–9576

    Article  CAS  Google Scholar 

  • Marks EA, Mattana S, Alcañiz JM, Domene X (2014) Biochars provoke diverse soil mesofauna reproductive responses in laboratory bioassays. Eur J Soil Biol 60:104–111

    Article  CAS  Google Scholar 

  • Matthew P (1831) On naval timber and arboriculture: with critical notes on authors who have recently treated the subject of planting. Adam Black, Edinburgh

    Google Scholar 

  • McElligott KM (2011) Biochar amendments to forest soils: effects on soil properties and tree growth. MSc Thesis, University of Idaho. p. 94

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Biores Technol 83:37–46

    Article  CAS  Google Scholar 

  • Monteath R (1824) The forester’s guide and profitable planter, 2nd edn. Stirling and Kenney, Edinburgh

    Google Scholar 

  • Neves EG, Petersen JB, Bartone RN, Da Silva CA (2003) Historical and socio-cultural origins of Amazonian Dark Earths. In: Lehmann J et al (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic Publishers, Dodrecht, pp 29–50

    Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Omil B, Piñero V, Merino A (2013) Soil and tree responses to the application of wood ash containing charcoal in two soils with contrasting properties. For Ecol Manage 295:199–212

    Article  Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. In: Rowell RM (ed) The chemistry of solid wood. American Chemical Society, Washington, DC, USA, pp 57–126

    Chapter  Google Scholar 

  • Pluchon N, Gundale MJ, Nilsson M-C, Kardol P, Wardle DA (2014) Stimulation of boreal tree seedling growth by wood-derived charcoal: effects of charcoal properties, seedling species and soil fertility. Func Ecol 28:766–775

    Article  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fert Soils 48:271–284

    Article  CAS  Google Scholar 

  • Reverchon F, Yang H, Ho TY, Yan G, Wang J, Xu Z, Chen C, Zhang D (2014) A preliminary assessment of the potential of using an acacia-biochar system for spent mine site rehabilitation. Environ Sci Pollut Res 22:2138–2144

  • Robertson SJ et al (2012) Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils. Can J Soil Sci 92:329–340

    Article  CAS  Google Scholar 

  • Ronsse F, Van Hecke S, Dickinson D, Prins W (2013) Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy 5:104–115

    Article  CAS  Google Scholar 

  • Sackett TE, Basiliko N, Noyce GL, Winsborough C, Schurman J, Ikeda C, Thomas SC (2014) Soil and greenhouse gas responses to biochar in a north temperate forest. GCB Bioenergy. doi:10.1111/gcbb.12211

    Google Scholar 

  • Scharenbroch BC, Meza EN, Catania M, Fite K (2013) Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. J Env Qual 42:1372–1385

    Article  CAS  Google Scholar 

  • Schmidt MJ, Heckenberger MJ (2009) Amerindian Anthrosols: Amazonian Dark Earth formation in the upper Xingu. In: Woods WI (ed) Amazonian dark earths: wim sombroek’s vision. Springer, Berlin, pp 163–191

    Chapter  Google Scholar 

  • Schulz H, Glaser B (2012) Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J Pl Nut Soil Sci 175:410–422

    Article  CAS  Google Scholar 

  • Sheil D, Basuki I, German L, Kuyper TW, Limberg G, Puri RK, Sellato B, van Noordwiji M, Wollenberg E (2012) Do anthropogenic dark earths occur in the interior of Borneo? Some initial observations from East Kalimantan. Forests 3:207–229

    Article  Google Scholar 

  • Siregar CA (2007) Effect of charcoal application in the early growth stage of Acacia mangium and Michelia montana. J For Res 4:119–130

    Google Scholar 

  • Sovu MT, Savadogo P, Oden PC (2012) Facilitation of forest landscape restoration on abandoned swidden fallows in Laos using mixed-species planting and biochar application. Silva Fenn 46:39–51

    Google Scholar 

  • Spokas KA (2010) Review of the stability of biochar in soils: predictability of O: C molar ratios. Carbon Manage 1:289–303

  • Spokas KA, Cantrell KB, Novak JM, Dw Archer, Ippolito JA, Collins HP, Boateng AA, Lima IM, Lamb MC, McAloon AJ, Lentz RD, Nichols KAS (2012) Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Env Qual 41:973–989

    Article  CAS  Google Scholar 

  • Stavi I (2013) Biochar use in forestry and tree-based agro-ecosystems for increasing climate change mitigation and adaptation. Int J Sust Dev World Ecol 20:166–181

    Article  Google Scholar 

  • Sutton M (2014) Nullius in verba: Darwin’s greatest secret. Thinker Media

  • Thomas SC (2013). Biochar and its potential in Canadian forestry. Silviculture Mag, January 2013, 4–6

  • Thomas SC, Jasienski M, Bazzaz FA (1999) Early vs. asymptotic growth responses of herbaceous plants to elevated CO2. Ecology 80:1552–1567

    Google Scholar 

  • Thomas SC, Frye S, Gale N, Garmon M, Launchbury R, Machado N, Melamed S, Murray J, Petroff A, Winsborough C (2013) Biochar mitigates negative effects of salt additions on two herbaceous plant species. J Env Manage 129:62–68

    Article  CAS  Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298

    Article  CAS  Google Scholar 

  • Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosys Environ 108:145–154

    Article  CAS  Google Scholar 

  • Wilson K (2013) Justus Von Liebig and the birth of modern biochar. Ithaka J, Aug. 2013. www.ithaka-journal.net/english-justus-von-liebig-and-the-birth-of-modern-biochar

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  PubMed  Google Scholar 

  • Woolf D, Amonette JE, Street-Perrott FA, Lehmann J, Joseph S (2010) Sustainable biochar to mitigate global climate change. Nature Comm 1:56

    Article  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671

    Article  CAS  PubMed  Google Scholar 

  • Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77:10–19

    Article  Google Scholar 

  • Zon R (1913) Darwinism in forestry. Am Nat 47:540–546

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean C. Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, S.C., Gale, N. Biochar and forest restoration: a review and meta-analysis of tree growth responses. New Forests 46, 931–946 (2015). https://doi.org/10.1007/s11056-015-9491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-015-9491-7

Keywords

Navigation