[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

ORELM: A Novel Machine Learning Approach for Prediction of Flyrock in Mine Blasting

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

Blast-induced flyrock is a hazardous and undesirable phenomenon that may occur in surface mines, especially when blasting takes place near residential areas. Therefore, accurate prediction of flyrock distance is of high significance in the determination of the statutory danger area. To this end, there is a practical need to propose an accurate model to predict flyrock. Aiming at this topic, this study presents two machine learning models, including extreme learning machine (ELM) and outlier robust ELM (ORELM), for predicting flyrock. To the best of our knowledge, this is the first work that investigates the use of ORELM model in the field of flyrock prediction. To construct and verify the proposed ELM and ORELM models, a database including 82 datasets has been collected from the three granite quarry sites in Malaysia. Additionally, artificial neural network (ANN) and multiple regression models were used for comparison. According to the results, both ELM and ORELM models performed satisfactorily, and their performances were far better compared to the performances of ANN and multiple regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Armaghani, D. J., Hajihassani, M., Bejarbaneh, B. Y., Marto, A., & Mohamad, E. T. (2014a). Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement,55, 487–498.

    Article  Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Mohamad, E. T., Marto, A., & Noorani, S. A. (2014b). Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arabian Journal of Geosciences,7, 5383–5396.

    Article  Google Scholar 

  • Armaghani, D. J., Hajihassani, M., Monjezi, M., Mohamad, E. T., Marto, A., & Moghaddam, M. R. (2015a). Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences,8, 9647–9665.

    Article  Google Scholar 

  • Armaghani, D. J., Mohamad, E. T., Hajihassani, M., Abad, S. A. N. K., Marto, A., & Moghaddam, M. R. (2015b). Evaluation and prediction of flyrock resulting from blasting operations using empirical and computational methods. Engineering with Computers,32(1), 109–121.

    Article  Google Scholar 

  • Armaghani, D. J., Mohamad, E. T., Momeni, E., & Narayanasamy, M. S. (2015c). An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: A study on Main Range granite. Bulletin of Engineering Geology and the Environment,74(4), 1301–1319.

    Article  Google Scholar 

  • Armaghani, D. J., Hasanipanah, M., Bakhshandeh Amnieh, H., & Mohamad, E. T. (2018a). Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing and Applications,29(9), 457–465.

    Article  Google Scholar 

  • Armaghani, D. J., Mohamad, E. T., Narayanasamy, M. S., Narita, N., & Yagiz, S. (2018b). Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology,63, 29–43.

    Article  Google Scholar 

  • Bajpayee, T., Rehak, T., Mowrey, G., & Ingram, D. (2004). Blasting injuries in surface mining with emphasis on flyrock and blast area security. Journal of Safety Research,35(1), 47–57.

    Article  Google Scholar 

  • Bakhtavar, E., & Yousefi, S. (2018). Analysis of ground vibration risk on mine infrastructures: Integrating fuzzy slack-based measure model and failure effects analysis. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-2008-0.

    Article  Google Scholar 

  • Behzadafshar, K., Mohebbi, F., Soltani Tehrani, M., Hasanipanah, M., & Tabrizi, M. (2018). Predicting the ground vibration induced by mine blasting using imperialist competitive algorithm. Engineering Computation,35(4), 1774–1787.

    Article  Google Scholar 

  • Bui, X. N., Nguyen, H., Le, H. A., Bui, H. B., & Do, N. H. (2019). Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques. Natural Resources Research. https://doi.org/10.1007/s11053-019-09461-0.

    Article  Google Scholar 

  • Ebtehaj, I., Bonakdari, H., & Shamshirband, S. (2016). Extreme learning machine assessment for estimating sediment transport in open channels. Engineering with Computers,32(4), 691–704.

    Article  Google Scholar 

  • Gao, W., Alqahtani, A. S., Mubarakali, A., Mavaluru, D., & Khalafi, S. (2019). Developing an innovative soft computing scheme for prediction of air overpressure resulting from mine blasting using GMDH optimized by GA. Engineering with Computers,35(131), 1–8.

    Google Scholar 

  • Ghasemi, E., Amini, H., Ataei, M., & Khalokakaei, R. (2014). Application of artificial intelligence techniques for predicting the flyrock distance caused by blasting operation. Arabian Journal of Geosciences,7, 193–202.

    Article  Google Scholar 

  • Hajihassani, M., Armaghani, D. J., Marto, A., & Mohamad, E. T. (2015a). Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment,74(3), 873–886.

    Article  Google Scholar 

  • Hajihassani, M., Armaghani, D. J., Monjezi, M., Mohamad, E. T., & Marto, A. (2015b). Blast-induced air and ground vibration prediction: A particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences,74(4), 2799–2817.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Koopialipoor, M., & Arab, H. (2018). A risk-based technique to analyze flyrock results through rock engineering system. Geotechnical and Geological Engineering,36(4), 2247–2260.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Amnieh, H. B., Majid, M. Z. A., & Tahir, M. M. D. (2017a). Application of PSO to develop a powerful equation for prediction of flyrock due to blasting. Neural Computing and Applications,28(1), 1043–1050.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Amnieh, H. B., Armaghani, D. J., & Monjezi, M. (2017b). Forecasting blast-induced ground vibration developing a CART model. Engineering with Computers,33(2), 307–316.

    Article  Google Scholar 

  • Hasanipanah, M., Faradonbeh, R. S., Armaghani, D. J., Amnieh, H. B., & Khandelwal, M. (2017c). Development of a precise model for prediction of blast-induced flyrock using regression tree technique. Environmental Earth Sciences,76(1), 27.

    Article  Google Scholar 

  • Hasanipanah, M., Shahnazar, A., Amnieh, H. B., & Armaghani, D. J. (2017d). Prediction of air-overpressure caused by mine blasting using a new hybrid PSO–SVR model. Engineering with Computers,33(1), 23–31.

    Article  Google Scholar 

  • Hasanipanah, M., Armaghani, D. J., Khamesi, H., Amnieh, H. B., & Ghoraba, S. (2016a). Several non-linear models in estimating air-overpressure resulting from mine blasting. Engineering with Computers,32(3), 441–455.

    Article  Google Scholar 

  • Hasanipanah, M., Noorian-Bidgoli, M., Armaghani, D. J., & Khamesi, H. (2016b). Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling. Engineering with Computers,32(4), 705–715.

    Article  Google Scholar 

  • Hasanipanah, M., Bakhshandeh Amnieh, H., Khamesi, H., Armaghani, D. J., Bagheri Golzar, S., & Shahnazar, A. (2016c). Prediction of an environmental issue of mine blasting: An imperialistic competitive algorithm-based fuzzy system. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-017-1395-y.

    Article  Google Scholar 

  • Hecht-Nielsen, R. (1987). Kolmogorov’s mapping neural network existence theorem. In Proceedings of the first IEEE international conference on neural networks, San Diego, CA, USA, 11–14.

  • Holmeberg, R., & Persson, G. (1976). The effect of stemming on the distance of throw of flyrock in connection with hole diameters. Report DS 1, Swedish Detonic Research Foundation.

  • Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. International Joint Conference on Neural Networks,2, 985–990.

    Google Scholar 

  • IME. (1997). Glossary of commercial explosives industry terms. Washington: Institute of Makers of Explosives.

    Google Scholar 

  • Kecojevic, V., & Radomsky, M. (2005). Flyrock phenomena and area security in blasting-related accidents. Safety Science,43(9), 739–750.

    Article  Google Scholar 

  • Khandelwal, M., & Armaghani, D. J. (2016). Prediction of drillability of rocks with strength properties using a hybrid GA-ANN technique. Geotechnical and Geological Engineering,34(2), 605–620.

    Article  Google Scholar 

  • Khandelwal, M., & Monjezi, M. (2013). Prediction of flyrock in open pit blasting operation using machine learning method. International Journal of Rock Mechanics and Mining Sciences,23, 313–316.

    Google Scholar 

  • Khandelwal, M., & Singh, T. N. (2007). Evaluation of blast-induced ground vibration predictors. Soil Dynamics and Earthquake Engineering,27(2), 116–125.

    Article  Google Scholar 

  • Koopialipoor, M., Fallah, A., Armaghani, D. J., Azizi, A., & Tonnizam Mohamad, E. (2018). Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering with Computers,35(1), 243–256.

    Article  Google Scholar 

  • Lu, X., Zhou, W., Ding, X., Shi, X., Luan, B., & Li, M. (2019). Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2918177.

    Article  Google Scholar 

  • Marto, A., Hajihassani, M., Armaghani, D. J., Tonnizam Mohamad, E., & Makhtar, A. M. (2014). A novel approach for blast induced flyrock prediction based on imperialist competitive algorithm and artificial neural network. Scientific World Journal,5, 643715.

    Google Scholar 

  • Momeni, E., Nazir, R., Armaghani, D. J., & Maizir, H. (2015). Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sciences Research Journal,19(1), 85–93.

    Article  Google Scholar 

  • Monjezi, M., Hasanipanah, M., & Khandelwal, M. (2013). Evaluation and prediction of blast-induced ground vibration at Shur River Dam, Iran, by artificial neural network. Neural Computing and Applications,22(7–8), 1637–1643.

    Article  Google Scholar 

  • Monjezi, M., Khoshalan, H. A., & Varjani, A. Y. (2012). Prediction of flyrock and backbreak in open pit blasting operation: A neurogenetic approach. Arabian Journal of Geosciences,5, 441–448.

    Article  Google Scholar 

  • Nguyen, H., & Bui, X. N. (2018). Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Natural Resources Research. https://doi.org/10.1007/s11053-018-9424-1.

    Article  Google Scholar 

  • Nguyen, H., Bui, X. N., Bac, B. H., & Mai, N. L. (2018). A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam. Neural Computing and Applications. https://doi.org/10.1007/s00521-018-3717-5.

    Article  Google Scholar 

  • Nguyen, H., Drebenstedt, C., Bui, X. N., & Bui, D. T. (2019). Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09470-z.

    Article  Google Scholar 

  • Qi, C., Fourie, A., Chen, Q., Tang, X., Zhang, Q., & Gao, R. (2018). Data-driven modelling of the flocculation process on mineral processing tailings treatment. Journal of Cleaner Production,196, 505–516.

    Article  Google Scholar 

  • Qi, C., Chen, Q., Fourie, A., Tang, X., Zhang, Q., Dong, X., et al. (2019a). Constitutive modelling of cemented paste backfill: A data-mining approach. Construction and Building Materials,197, 262–270.

    Article  Google Scholar 

  • Qi, C., Tang, X., Dong, X., Chen, Q., Fourie, A., & Liu, E. (2019b). Towards intelligent mining for backfill: A genetic programming-based method for strength forecasting of cemented paste backfill. Minerals Engineering,133, 69–79.

    Article  Google Scholar 

  • Rad, H. N., Bakhshayeshi, I., Wan Jusoh, W. A., Tahir, M. M., & Kok Foong, L. (2019). Prediction of flyrock in mine blasting: A new computational intelligence approach. Natural Resources Research. https://doi.org/10.1007/s11053-019-09464-x.

    Article  Google Scholar 

  • Rad, H. N., Hasanipanah, M., Rezaei, M., & Eghlim, A. L. (2018). Developing a least squares support vector machine for estimating the blast-induced flyrock. Engineering with Computers,34(4), 709–717.

    Article  Google Scholar 

  • Rehak, T., Bajpayee, T., Mowrey, G., & Ingram, D. (2001). Flyrock issues in blasting. In Proceedings of the annual conference on explosives and blasting technique, 2001. ISEE, 165–176.

  • Rezaei, M., Monjezi, M., & Varjani, A. Y. (2011). Development of a fuzzy model to predict flyrock in surface mining. Safety Science,49(2), 298–305.

    Article  Google Scholar 

  • Sari, M., Selcuk, A. S., Karpuz, C., & Duzgun, H. S. B. (2009). Stochastic modeling of accident risks associated with an underground coal mine in Turkey. Safety Science,47(1), 78–87.

    Article  Google Scholar 

  • Shahnazar, A., Rad, H. N., Hasanipanah, M., Tahir, M. M., Armaghani, D. J., & Ghoroqi, M. (2017). A new developed approach for the prediction of ground vibration using a hybrid PSO-optimized ANFIS-based model. Environmental Earth Sciences,76(15), 527.

    Article  Google Scholar 

  • Shang, Y., Nguyen, H., Bui, X. N., Tran, Q. H., & Moayedi, H. (2019). A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Natural Resources Research. https://doi.org/10.1007/s11053-019-09503-7.

    Article  Google Scholar 

  • Siskind, D. E., & Kopp, J. W. (1995). Blasting accidents in mines: a 16-year summary. In Proceedings of the twenty-first annual conference on explosives and blasting technique, vol 2. International Society of Explosives Engineers, Cleveland, OH.

  • Trivedi, R., Singh, T. N., & Gupta, N. I. (2015). Prediction of blast induced flyrock in opencast mines using ANN and ANFIS. Geotechnical and Geological Engineering,33, 875–891.

    Article  Google Scholar 

  • Verakis, H., & Lobb, T. (1999). Blasting accidents in surface mines, a two decade summary. In Proceedings of the annual conference on explosives and blasting technique, 2001. ISEE, pp 145–152.

  • Verakis, H., & Lobb, T. (2003). An analysis of surface coal mine blasting accidents. In Preprint for SME 2003 annual meeting, Littleton, Colorado, USA.

  • Yang, H., Hasanipanah, M., Tahir, M. M., & Bui, D. T. (2019). Intelligent prediction of blasting-induced ground vibration using ANFIS optimized by GA and PSO. Natural Resources Research. https://doi.org/10.1007/s11053-019-09515-3.

    Article  Google Scholar 

  • Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM Journal on Scientific Computing,33(1), 250–278.

    Article  Google Scholar 

  • Yari, M., Bagherpour, R., Jamali, S., & Shamsi, R. (2016). Development of a novel flyrock distance prediction model using BPNN for providing blasting operation safety. Neural Computing and Applications,27(3), 699–706.

    Article  Google Scholar 

  • Yari, M., Monjezi, M., Bagherpour, R., & Jamali, S. (2014). Developing a mathematical assessment model for blasting patterns management: Sungun copper mine. Journal of Central South University,21(11), 4344–4351.

    Article  Google Scholar 

  • Zhang, K., & Luo, M. (2015). Outlier-robust extreme learning machine for regression problems. Neurocomputing,151, 1519–1527.

    Article  Google Scholar 

  • Zhang, X., Nguyen, H., Bui, X.-N., Tran, Q.-H., Nguyen, D.-A., Bui, D. T., et al. (2019). Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Natural Resources Research. https://doi.org/10.1007/s11053-019-09492-7.

    Article  Google Scholar 

Download references

Acknowledgment

This paper is supported by the National Key Research and Development Program of China (2016YFC0501103); the National Natural Science Foundation of China (Grant No. 51804299); and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180646).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahdi Hasanipanah or Kathirvel Brindhadevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Hasanipanah, M., Brindhadevi, K. et al. ORELM: A Novel Machine Learning Approach for Prediction of Flyrock in Mine Blasting. Nat Resour Res 29, 641–654 (2020). https://doi.org/10.1007/s11053-019-09532-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-019-09532-2

Keywords

Navigation