[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A comprehensive study of visual event computing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper contains a survey on aspects of visual event computing. We start by presenting events and their classifications, and continue with discussing the problem of capturing events in terms of photographs, videos, etc, as well as the methodologies for event storing and retrieving. Later, we review an extensive set of papers taken from well-known conferences and journals in multiple disciplines. We analyze events, and summarize the procedure of visual event actions. We introduce each component of a visual event computing system, and its computational aspects, we discuss the progress of each component and review its overall status. Finally, we suggest future research trends in event computing and hope to introduce a comprehensive profile of visual event computing to readers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams B, Venkatesh S (2005) Situated event bootstrapping and capture guidance for automated home movie authoring. In: Proc. of ACM Multimedia’05, Singapore, pp 754–763

  2. Alahari K, Jawahar C (2006) Discriminative actions for recognising events. In: Proc. of ICVGIP’06. LNCS, vol 4338, India, pp 552–1563

  3. Al-Hames M, Rigoll G (2005) A multi-modal mixed-state dynamic bayesian network for robust meeting event recognition from disturbed data. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 45–48

  4. Alahari K, Jawahar C (2006) Dynamic events as mixtures of spatial and temporal features. In: Proc. of ICVGIP’06. LNCS vol 4338, India, pp 540–551

  5. Alan Fern RG, Siskind JM (2002) Learning temporal, relational, force-dynamic event definitions from video. In: Proc. of AAAI’02, Palo Alto, California, pp 159–166

  6. Amer A, Dubois E, Mitiche A (2002) Context-independent real-time event recognition: application to key-image extraction. In: Proc. of IEEE ICPR’02, Quebec, Canada, pp 945–948

  7. Amera A, Duboisb E, Mitichec A (2005) Rule-based real-time detection of context-independent events in video shots. Real-Time Imaging 11(3):244–256

    Article  Google Scholar 

  8. Andrade EL, Blunsden S, Fisher RB (2006) Modeling crowd scenes for event detection. In: Proc. of ICPR’06, Hong Kong, China, pp 175–178

  9. Appan P, Sundaram H (2004) Networked multimedia event exploration. In: Proc. of ACM multimedia. New York City, USA, pp 40–47

  10. Atrey PK, Kankanhalli MS, Jain R (2006) Information assimilation framework for event detection in multimedia surveillance systems. Springer/ACM Multimedia Syst J 12(3):239–253

    Article  Google Scholar 

  11. Babaguchi N, Kawai Y, Kitahashi T (2002) Event based indexing of broadcasted sports video by intermodal collaboration. IEEE Trans Multimedia 12(3)68–75

    Article  Google Scholar 

  12. Babaguchi N, Sasamori S, Kitahashi T, Jain R (1999) Detecting events from continuous media by intermodal collaboration and knowledge use. In: Proc. of IEEE ICMCS’99, Firenze, Italy, pp 782–786

  13. Barnard M, Odobez J-M (2005) Sports event recognition using layered hmms. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 1150–1153

  14. Baulier J, Blott S, Korth HF, Silberschatz A (1998) A database system for real-time event aggregation in telecommunication. In: Proc. of VLDB’98, pp 680–684, New York, USA

  15. Behera A, Lalanne D, Ingold R (2004) Looking at projected documents: event detection & document identification. In: Proc. of IEEE ICME’04, Taipei, pp 2127–2130

  16. Bertini M, Bimbo AD, Cucchiara R, Prati A (2004) Object-based and event-based semantic video adaptation. In: Proc. of IEEE ICPR’04, Cambridge, UK, pp 987–990

  17. Black MJ (1999) Explaining optical flow events with parameterized spatio-temporal models. In: Proc. of IEEE CVPR’99, Ft Collins, USA, pp 326–332

  18. Bonzanini A, Leonardi R, Migliorati P (2001) Event recognition in sport programs using low-level motion indices. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 2127–2130

  19. Boykin S, Merlino A (2000) Machine learning of event segmentation for news on demand. Commun ACM 43(2):35–41

    Article  Google Scholar 

  20. Burges CJ (1998) A tutorial on Support Vector Machines for pattern recognition. Data Min Knowl Disc 2:121–167

    Article  Google Scholar 

  21. Chan MT, Hoogs A, Schmiederer J, Petersen M (2004) Detecting rare events in video using semantic primitives with HMM. In: Proc. of IEEE ICPR’04, Cambridge, UK, pp 150–154

  22. Chan MT, Hoogs A, Sun Z, Schmiederer J, Bhotika R, Doretto G (2006) Event recognition with fragmented object tracks. In: Proc. of IEEE ICPR’06, HongKong, China, pp 412–416

  23. Chan MT, Hoogs A, Bhotika R, Perera AGA, Schmiederer J, Doretto G (2006) Joint recognition of complex events and track matching. In: Proc. of IEEE CVPR’06, New York, USA, pp 1615–1622

  24. Chu W-T, Wu J-L (2005) Integration of rule-based and model-based decision methods for baseball event detection. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 137–140

  25. Cooper M, Foote J, Girgensohn A, Wilcox L (2005) Temporal event clustering for digital photo collections. ACM Trans on TOMCCAP 1(3):269–288

    Google Scholar 

  26. Cui P, Sun L, Liu Z-Q, Yang S (2007) A sequential monte carlo approach to anomaly detection in tracking visual events. In: Proc of IEEE CVPR’07, Minnesota, USA

  27. Dai S, Dhawan AP (2007) Adaptive learning for event modeling and characterization. Pattern Recogn 40(5):1544–1555

    Article  MATH  Google Scholar 

  28. Demers A, Gehrke J, Hong M, Riedewald M, White W (2005) A general algebra and implementation for monitoring event streams. Cornell University, Tech Rep TR2005-1997

  29. Engle JC, Odutola A (2006) Control field event detection in a digital video recorder. US Patent 5699124

  30. Fern A, Givan R, Siskind JM (2002) Specific-to-general learning for temporal events. In: Proc. of AAAI’02, Palo Alto, USA, pp 152–158

  31. Foresti GL, Marcenaro L, Regazzoni CS (2002) Automatic detection and indexing of video event shots for surveillance applications. IEEE Trans Multimedia 4(4):459–471

    Article  Google Scholar 

  32. Foresti GL, Micheloni C, Snidaro L (2004) Event classification for automatic visual-based surveillance of parking lots. In: Proc. of IEEE ICPR’04, Cambridge, UK, pp 314–317

  33. Franois ARJ, Nevatia R, Hobbs JR, Bolles RC (2003) VERL: an ontology framework for representing and annotating video events. IEEE Multimed 76:269–288

    Google Scholar 

  34. Frawley GP-S W, Matheus C (1992) Knowledge discovery in databases: an overview. AI Mag 13(3):213–228

    Google Scholar 

  35. Gehani NH, Jagadish HV, Shmueli O (1992) Composite event specification in active databases: model & implementation. In: Proc. of VLDB’92, Vancouver, Canada, pp 327–338

  36. Ghahramani Z (1998) Adaptive processing of sequences and data structures, lecture notes in artificial intelligence. ch. Learning Dynamic Bayesian Networks. Springer-Verlag, Berlin, pp 168–197

    Google Scholar 

  37. Ghanem N, DeMenthon D, david Doermann, Davis L (2004) Representation and recognition of events in surveillance video using Petri nets. In: Proc. of workshop on event mining, Madison, USA, vol 7, no 7, p 112

  38. Gu H, Ji Q (2004) Facial event classification with task oriented dynamic Bayesian network. In: Proc. of IEEE CVPR’04, Reno, USA, pp 870–875

  39. Haering NC, Qian RJ, Sezan MI (2000) A semantic event-detection approach and its application to detecting hunts in wildlife video. IEEE Trans Circuits Syst Video Technol 6(10):857–868

    Article  Google Scholar 

  40. Hakeem A, Shah M (2005) Multiple agent event detection and representation in videos. In: Proc. of AAAI’05, Pittsburgh, USA, pp 89–94

  41. Hakeem A, Sheikh Y, Shah M (2004) Casee: a hierarchical event representation for the analysis of videos. In: Proc. of AAAI’04. San Jose, USA, pp 263–268

  42. Hamid R, Johnson AY, Batta S, Bobick AF, Isbell CL, Coleman G (2005) Detection and explanation of anomalous activities: representing activities as bags of event n-grams. In: Proc. of IEEE CVPR’05. San Diego, USA, pp 1031–1038

  43. Hand HMD, Smyth P (2001) Principles of data mining. MIT Press, Cambridge, USA

    Google Scholar 

  44. Haynes S, Jain R (1984) Low level motion events, trajectory discontinuities. In: Proc. of the first conference on artificial intelligence applications. San Diego, USA, pp 251–256

  45. Haynes S, Jain R (1984) Event detection and correspondence. In: Proc. of Optical engineering, San Diego, USA, pp 251–256

  46. Hongeng S (2004) Unsupervised learning of multi-object event classes. In: Proc. of the 15th British machine vision conference (BMVC’04). London, UK

  47. Hongeng S, Nevatia R (2003) Large-scale event detection using Semi-Hidden Markov Models. In: Proc. of IEEE ICCV’03. Nice, France, pp 1455–1462

    Google Scholar 

  48. Hopkins M (2002) Strategies for determining causes of events. In: Proc. of AAAI’02. Palo Alto, California, pp 546–552

  49. Johnson N, Hogg DC (1995) Learning the distribution of object trajectories for event recognition. In: Proc. of the 6th British conference on machine vision, Surrey, UK, pp 583–592

  50. Joo S-W, Chellappa R (2006) Attribute grammar-based event recognition and anomaly detection. In: Proc. of CVPRW’06, New York, USA, pp 107–115

  51. Jung Y-K, Lee K-W, Ho Y-S (2001) Content-based event retrieval using semantic scene interpretation for automated traffic surveillance. IEEE Trans Intell Transp Syst 2(3):151–163

    Article  Google Scholar 

  52. Kang H-B (2002) Analysis of scene context related with emotional events. In: Proc. of ACM Multimedia’02, Juan Les Pins, France, pp 311–314

  53. Kawashima H, Matsuyama T (2002) Integrated event recognition from multiple sources. In: Proc. of IEEE ICPR’02, Quebec, Canada, pp 785–789

  54. Ke Y (2005) Efficient visual event detection using volumetric features. In: Proc. of IEEE ICCV’05, Beijing, China, pp 166–173

  55. Ke Y, Sukthankar R, Hebert M (2007) Event detection in crowded videos. In: Proc of IEEE ICCV’07, Rio de Janeiro, Brazi

  56. Krzysztof W, Cios P, Swiniarski R (1998) Data mining methods for knowledge discovery. Kluwer, Norwell, MA

    MATH  Google Scholar 

  57. Lee D, Yannakakis M (1996) Principles and methods of testing finite state machines—a survey. Proc IEEE 84(8):1090–1122

    Article  Google Scholar 

  58. Li L-J, Li F-F (2007) What, where and who? classifying events by scene and object recognition. In: Proc of IEEE ICCV’07, Rio de Janeiro, Brazi

  59. Li C-H, Chiu C-Y, Huang C-R, Chen C-S, Chien L-F (2006) Image content clustering and summarization for photo collection. In: Proc. of IEEE ICME’06, Canada

  60. Lie W-N, Shia S-H (2005) Combining caption and visual features for semantic event classification of baseball video. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 1254–1257

  61. Lie W-N, Lin T-C, Hsia S-H (2004) Motion-based event detection and semantic classification for baseball sport videos. In: Proc. of IEEE ICME’04, Taipei, Taiwan, pp 1567–1570

  62. Lim J-H, Tian Q, Mulhem P (2003) Home photo content modeling for personalized event-based retrieval. IEEE Multimed 10(4):28–37

    Article  Google Scholar 

  63. Loui AC, Savakis AE (2001) Automatic image event segmentation and quality screening for albuming applications. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 1125–1128

  64. Loui AC, Savakis AE (2003) Automated event clustering and quality screening of consumer pictures for digital albuming. IEEE Trans Multimedia 10(4):390–402

    Article  Google Scholar 

  65. Lu C, Ferrier NJ (2004) Repetitive motion analysis: segmentation and event classification. IEEE Trans PAMI 26(2):258–263

    Article  Google Scholar 

  66. Ma Y, Bazakos M, Miller B, Buddharaju P (2006) Activity awareness: from predefined events to new pattern discovery. In: Proc. of ICVS’06, p 11

  67. Malaia E (2006) Event structure representation in ontological semantics. In: Proc. of MLMTA (international conference on machine learning models, technologies & applications), Las Vegas, USA, pp 36–42

  68. Matthew AG, Cooper D, Foote J, Wilcox L (2003) Temporal event clustering for digital photo collections. In: Proc. of ACM multimedia’03, Berkely, USA, pp 364–373

  69. Mei T, Wang B, Hua X-S, Zhou H-Q, Li S (2006) Probabilistic multimodality fusion for event based home photo clustering. In: Proc. of IEEE ICME’06, Canada, pp 1757–1760

  70. Miyauchi S, Hirano A, Babaguchi N, Kitahashi T (2002) Collaborative multimedia analysis for detecting semantical events from broadcasted sports video. In: Proc. of ICPR’02, Tokyo, Japan, pp 1009–1012

  71. Mustafa A, Sethi I (2005) Detecting retail events using moving edges. In: Proc. of AVSS 2005, pp 626–631

  72. Naaman M, Harada S, Wang Q (2004) Context data in geo-referenced digital photo collections. In: Proc. of ACM multimedia, New York, NY, USA, pp 196–203

  73. Naaman M, Yeh RB, Garcia-Molina H, Paepcke A (2005) Leveraging context to resolve identity in photo albums. In: Proc. of the 5th ACM/IEEE-CS joint conference on digital libraries, Denver, CO, USA, pp 178–187

  74. Naphade M, Huang T (2002) Discovering recurrent events in video using unsupervised methods. In: Proc. of IEEE ICIP’02

  75. Naphade MR, Garg A, Huang TS (1997) Duration dependent input output markov models for audio-visual event detection. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 369–372

  76. Nevatia R, Hobbs J, Bolls B (2004) An ontology for video event representation. In: Proc. of CVPRW’04, Washington, USA, vol 9, no 27, p 119

  77. Nitta N, Babaguchi N, Kitahashi T (2000) Extracting actors, actions and events from sports video—a fundamental approach to story tracking. In: Proc of IEEE ICPR’00, Barcelona, Spain, pp 4718–4721

  78. Nishida T, Kamijo S, Ikeuchi K (2001) Automated system of acquiring and visualizing track event statistics from track images. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 169–172

  79. O’Hare N, Gurrin C, Lee H, Murphy N, Smeaton AF, Jones GJ (2005) Digital photos: where and when? In: Proc. of ACM multimedia’05, Singapore

  80. Okadome T (2006) Event representation for sensor data grounding. International Journal of Computer Science and Network Security 6(10):129–162

    Google Scholar 

  81. Osadchy M, Keren D (2004) A rejection-based method for event detection in video. IEEE Trans Circuits Syst Video Technol 4(14):534–541

    Article  Google Scholar 

  82. Pack D, Singh R, Brennan S, Jain R (2004) An event model and its implementation for multimedia information representation and retrieval. In: Proc. of IEEE ICME’04, Taipei, Taiwan, pp 1611–1614

  83. Park S, Aggarwal JK (2004) Event semantics in two-person interactions. In: Proc. of IEEE ICPR’04, Taipei, Taiwan, pp 227–230

  84. Peyrard N, Bouthemy P (2003) Detection of meaningful events in videos based on a supervised classification approach. In: Proc. of IEEE ICIP’03, pp 621–625

  85. Piater JH, Richetto S, Crowley JL (2002) Event-based activity analysis in live video using a generic object tracker. In: Proc. of third IEEE international workshop on performance evaluation of tracking and surveillance, Copenhagen, pp 1–8

  86. Pingali GS, Jean Y, Opalach A, Carlbom I (2001) Lucentvision: converting real world events into multimedia experiences. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 1433–1436

  87. Pinzon J, Singh R, Taube W, Galan J (2006) Designing interactions in event-based unified management of personal multimedia information. In: Proc. of IEEE ICME’06, Canada, pp 337–340

  88. Piriou G, Bouthemy P, Yao J-F (2004) Learned probabilistic image motion models for event detection in videos. In: Proc. of IEEE ICPR’04, Tokyo, Japan, pp 207–210

  89. Qian RJ, Haering NC, Sezan MI (1999) A computational approach to semantic event detection. In: Proc. of IEEE CVPR’99, Ft Collins, USA, pp 200–206

  90. Qiu G, Feng X, Fang J (2004) Compressing histogram representations for automatic color photo categorization. Pattern Recogn 37:2177–2193

    Article  Google Scholar 

  91. Quinton A (1979) Objects and events. Mind 88(350):197–214

    Article  Google Scholar 

  92. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–286

    Article  Google Scholar 

  93. Rao C, Shah M (2001) View-invariant representation and learning of human action. In: Proc. of IEEE workshop on detection and recognition of events in video, Vancouver, Canada, pp 55–63

  94. Rao C, Shah M, Syeda-Mahmmod T (2003) Invariance in motion analysis of videos. In: Proc. of ACM multimedia’03, Bekerley, USA, pp 518–527

  95. Reiter S, Rigoll G (2004) Segmentation and classification of meeting events using multiple classifier fusion and dynamic programming. In: Proc. of IEEE ICPR’04, Cambridge, UK, pp 434–437

  96. Remagnino P, Jones G (2001) Classifying surveillance events from attributes and behaviour. In: Proc. of British machine vision conf, Manchester, UK, pp 685–694

  97. Reiter S, Schuller B, Rigoll G (2006) Segmentation and recognition of meeting events using a two-layered hmm and a combined mlp-hmm approach. In: Proc. of IEEE ICME’06, Canada, pp 953–956

  98. Saad MS, Khan M (2006) A multiview approach to tracking people in crowded scenes using a planar homography constraint. In: Proc. of ECCV’06, Graz, Austria, pp 133–146

  99. Sadlier D, O’Connor NE (2005) Event detection based on generic characteristics of field-sports. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 759–762

  100. Satoh Y, Tanahashi H, Wang C, Kaneko S, Niwa Y, Yamamoto K (2002) Robust event detection by radial reach filter (RRF). In: Proc. of IEEE ICPR’02, Quebec, Canada, pp 623–626

  101. Schwalb E, Kask K, Dechter R (1994) Temporal reasoning with constraints on fluents and events. In: Proc. of AAAI’94, Seattle, USA, pp 1067–1072

  102. Shotton DM, Rodríguez A, Guil N, Trelles O (2000) Object tracking and event recognition in biological microscopy videos. In: Proc. of IEEE ICPR’00, Seattle, USA, pp 4226–4229

  103. Sinha SN, Pollefeys M (2005) Synchronization and calibration of a camera network for 3D event reconstruction from live video. In: Proc. of IEEE CVPR’05, San Diego, USA, p 1196

  104. Siskind JM (2002) Visual event classification via force dynamics. In: Proc of AAAI’02, San Diego, USA, pp 149–155

  105. Siskind JM, Morris Q (1996) A maximum-likelihood approach to visual event classification. In: Proc. of ECCV’96. LNCS, vol 1065, London, UK, pp 347–360

  106. Smith PN, da Vitoria Lobo, Shah M (2002) Temporalboost for event recognition. In: Proc. of IEEE ICCV’05, San Diego, CA, USA, pp 733–740

  107. Snoek C, Worring M (2006) Multimedia event-based video indexing using time intervals. Trans Multimedia 10(4):638–647

    Google Scholar 

  108. Syeda-Mahmood T (2002) Retrieving actions embedded in video. In: Proc. of ACM Multimedia’02, Juan Lins Pins, France, pp 513–522

  109. Syeda-Mahmood T, Srinivasan S (2000) Detecting topical events in digital video. In: Proc. of ACM multimedia’00. Marina del Rey, Los Angeles, USA, pp 85–94

    Chapter  Google Scholar 

  110. Syeda-Mahmood T, Vasilescu A (2001) Recognizing action events from multiple view points. In: Proc. of IEEE workshop on detection and recognition of events in video 2001, Las Palmas, USA, pp 64–72

  111. Tang Q, Koprinska I, Jin JS (2005) Content-adaptive transmission of reconstructed soccer goal events over low bandwidth networks. In: Proc. of ACM Multimedia’05, Singapore, pp 271–274

  112. Teisseire M, Poncelet P, Cicchetti R (1994) Towards event-driven modelling for database design. In: Proc. of VLDB’94. Santiago de Chile, Chile, pp 285–296

    Google Scholar 

  113. Teraguchi M, Masumitsu K, Echigo T, Sekiguchi S, Etoh M (2002) Rapid generation of event-based indexes for personalized video digests. In: Proc of IEEE ICPR’02, Quebec, Canada, pp 1041–1044

  114. Tesic J, Newsam S, Manjunath B (2002) Scalable spatial event representation. In: Proc. of IEEE ICME’02. Lausanne, Switzerland, pp 229–232

    Google Scholar 

  115. Thawani A, Gopalan S, Sridhar V (2004) Event driven semantics based ad selection. In: Proc. of IEEE ICME’04. Taipei, Taiwan, pp 1875–1878

  116. Trausti TSH, Kristjansson T, Brendan Frey J (2001) Event-coupled hidden Markov models. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 385–388

  117. Tong X-F, Lu H-Q, Liu Q-S (2004) A three-layer event detection framework and its application in soccer video. In: Proc. of IEEE ICME’04, Taipei, Taiwan, pp 1551–1554

  118. Tovinkere V, Qian RJ (2001) Detecting semantic events in soccer games: towards a complete solution. In: Proc. of IEEE ICME’01, Tokyo, Japan, pp 1551–1554

  119. Vassiliou A, Salway A, Pitt D (2004) Formalizing stories sequences of events and state changes. In: Proc. of IEEE ICME’04. Taipei, Taiwan, pp 587–590

  120. Veeraraghavan H, Papanikolopoulos N, Schrater P (2007) Learning dynamic event descriptions in image sequences. In: Proc. of IEEE CVPR’07, Minnesota, USA, pp 1–6

  121. Welch G, Bishop G (2001) An introduction to the Kalman filter. In: Proc. of ACM SIGGRPH’01, Los Angeles, USA

  122. Westermann U, Jain R (2006) Toward a common event model for multimedia applications. International Journal on Semantic Web & Information Systems 14(1):19–29

    Google Scholar 

  123. Worboys MF, Hornsby K (2004) From objects to events: gem, the geospatial event model. In: Proc. of GIScience’04, Adelphi, USA

  124. Xiang T, Gong S, Parkinson D (2002) Autonomous visual events detection and classification without explicit object-centred segmentation and tracking. In: Proc. of British machine vision conference, Cardiff, UK, pp 685–694

  125. Xu H, Chua T-S (2004) The fusion of audio-visual features and external knowledge for event detection in team sports video. In: Proc. of ACM SIGMM international workshop on multimedia information retrieval, New York, USA

  126. Xu H, Chua T-S (2006) Fusion of AV features and external information sources for event detection in team sports video. ACM TOMCCAP 2(1):44–67

    Article  Google Scholar 

  127. Xu H, Fong T-H, Chua T-S (2005) Fusion of multiple asynchronous information sources for event detection in soccer video. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 1242–1245

  128. Xu G, Ma Y-F, Zhang H, Yang S (2002) Motion based event recognition using HMM. In: Proc. of IEEE ICPR’02, Quebec, Canada, pp 831–834

  129. Xu C, Wang J, Li Y, Wan K, Duan L-Y (2006) Live sports event detection based on broadcast video and web-casting text. In: Proc. of ACM multimedia’06, Santa Barbara, CA, USA, pp 221–230

  130. Xu M, Li J, Hu Y, Chia L-T, Lee B-S, Rajan D, Cai J (2006) An event-driven sports video adaptation for the MPEG-21 DIA framework. In: Proc of IEEE ICME’06, Canada, pp 1245–1248

  131. Xu M, Li J, Chia L-T, Hu Y, Lee B-S, Rajan D, Jin JS (2006) Event on demand with MPEG-21 video adaptation system. In: Proc. of ACM multimedia’06, Santa Barbara, USA, pp 921–930

  132. Ye Q, Huang Q, Gao W, Jiang S (2005) Exciting event detection in broadcast soccer video with mid-level description and incremental learning. In: Proc. of ACM Multimedia’05, Singapore, pp 455–458

  133. Yokoi T, Fujiyoshi H (2006) Generating a time shrunk lecture video by event detection. In: Proc. of IEEE ICME’06, Canada, pp 641–644

  134. Yoneyama A, Yeh CH, Kuo CCJ (2004) Robust traffic event extraction via content understanding for highway surveillance system. In: Proc. of IEEE ICME’04, Taipei, Taiwan, pp 1679–1682

  135. Yoon K, DeMenthon D, Doermann DS (2000) Event detection from MPEG video in the compressed domain. In: Proc. of IEEE ICPR’00, Singapore, pp 1819–1822

  136. Zhang D, Chang S-F (2002) Event detection in baseball video using superimposed caption recognition. In: Proc. of ACM multimedia’02, Juan Les Pins, France, pp 315–318

  137. Zhang D, Gatica-Perez D, Bengio S (2005) Semi-supervised meeting event recognition with adapted HMMs. In: Proc. of IEEE ICME’05, Amsterdam, The Netherlands, pp 1102–1105

  138. Zhang Z, Huang K, Tan T, Wang L (2007) Trajectory series analysis based event rule induction for visual surveillance. In: Proc. of IEEE CVPR’07, Minnesota, USA

  139. Zelnik-Manor L, Irani M (2001) Event-based analysis of video. In: Proc. of IEEE CVPR’01, Hawaii, USA, pp 123–130

  140. Zelnik-Manor L, Irani M (2006) Statistical analysis of dynamic actions. IEEE Trans Pattern Anal Mach Intell 28(9):1530–1535

    Article  Google Scholar 

  141. Zhang D, Gatica-Perez D, Bengio S, McCowan I (2005) Semi-supervised adapted HMMs for unusual event detection. In: Proc. of IEEE CVPR’05, San Diego, USA, pp 611–618

  142. Zhong H, Shi J, Visontai M (2004) Detecting unusual activity in video. In: Proc of IEEE CVPR’04, Washington, DC, USA, pp 819–826

  143. Zhou H, Kimber D (2004) Unusual event detection via multi-camera video mining. In: Proc. of IEEE ICVR’04, Cambridge, UK, pp 1161–1166

  144. Zhu G, Huang Q, Xu C, Rui Y, Jiang S, Gao W, Yao H (2007) Trajectory based event tactics analysis in broadcast sports video. In: Proc. of ACM Multimedia’07, Augsburg, Germany, pp 58–67

Download references

Acknowledgements

We appreciate for the great help from the colleagues of Queen’s University Belfast(QUB): Prof. Danny Crookes, Dr. Weiru Liu, Dr. Paul Miller, and Dr. Xiwu Gu etc. This work was partially supported by QUB research project: Unusual event detection in audio-visual surveillance for public transport (NO.D6223EEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiQi Yan.

Additional information

This work was completed when the first author was a research scholar in UC Irvine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, W., Kieran, D.F., Rafatirad, S. et al. A comprehensive study of visual event computing. Multimed Tools Appl 55, 443–481 (2011). https://doi.org/10.1007/s11042-010-0560-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0560-9

Keywords

Navigation