Abstract
A new gait pattern is addressed and recognized in this paper. We use a multi-view part detector to detect the body parts of each participant. Multi-gait consisting of more than one participant is tracked using hierarchical association. We use a high-dimension exemplar-based method to realize gait image inpainting and use a tensor’s lowest rank to complete a two-value sequence completion. We use multiple linear tensors to describe multi-gait and realize recognition by a segmented accumulated energy map. The experimental results indicate that the methodology achieves high multi-gait recognition accuracy and has good robustness to dress, carried objects and view variance.
Similar content being viewed by others
References
Berclaz J, Fleuret F, Turetken E et al (2011) Multiple object tracking using K-shortest paths optimization. IEEE Trans Pattern Anal Mach Intell 33(9):1806–1819
Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. Proc IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239
Brendel W, Amer M, Todorovic S (2011) Multi-object tracking as maximum-weight independent set. Proc. IEEE Conf. Comput Vis Pattern Recognit
Chen X, Yang T (2014) Extraction Method of Gait Feature Based on Human Centroid Trajectory. Proc 2013 Int Conf Comput Eng Netw (CENet 2013) 277:515–523
Chen C, Liang J, Zhao H et al (2009) Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn Lett 30:977–984
Choudhury SD, Tjahjadi T (2013) Gait recognition based on shape and motion analysis of silhouette contours. Comput Vis Image Underst 117:1770–1785
Dalal N, Triggs B (2007) Histograms of oriented gradients for human detection. Proc. IEEE Conf. Comput Vis Pattern Recogn
Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. Proc. Eur Conf. Comput Vis
Fleuret F, Berclaz J, Lengagne R et al (2008) Multi-camera people tracking with a probabilistic occupancy Map. IEEE Trans Pattern Anal Mach Intell 30(2):267–282
Gavrila DM (2007) A Bayesian, exemplar-based approach to hierarchical shape matching. IEEE Trans Pattern Anal Mach Intell 29(8):1408–1421
Guldogan MB, Lindgren D, Gustafsson F et al (2014) Multi-target tracking with PHD filter using doppler-only measurements. Digit Signal Process 27:1–11
Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising—part I: theory. IEEE Trans Image Process 15(3):539–554
Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322
Hayfron-Acquah JB, Nixon MS, Carter JN (2003) Automatic gait recognition by symmetry analysis. Pattern Recogn Lett 24(13):2175–2183
Hays J, Efros AA (2007) Scene completion using millions of photographs. in Proc SIGGRAPH 1–7
Hays J, Efros AA (2007) Scene completion using millions of photographs. in Proc. SIGGRAPH 1–7
Huang C, Wu B, Nevatia R (2008) Robust object tracking by hierarchical association of detection responses. Proc. Eur Conf. Comput Vis 788–801
Huang C, Li Y, Nevatia R (2013) Multiple target tracking by learning-based hierarchical association of detection responses. IEEE Trans Pattern Anal Mach Intell 35(4):898–910
Huo F et al (2014) Analyzing pedestrian merging flow on a floor–stair interface using an extended lattice gas model. Commun Theor Phys 90(5):501–510
Jeong S, Cho J (2013) A framework for online gait recognition based on multilinear tensor analysis. J Supercomput 65:106–121
Jiang H, Fels S, Little JJ (2007) A linear programming approach for multiple object tracking. Proc. IEEE Conf. Comput Vis Pattern Recogn
JR P, Tu H, Krahnstoever N (2005) Simultaneous estimation of segmentation and shape. CVPR II:486–493
Kim S, Kwak S, Feyereisl J, Han B (2012) Online multi-target tracking by large margin structured learning in ACCV
Kirchner A, Klupfel H, Nishinari K et al (2003) Simulation of competitive egress behavior comparison with aircraft evacuation data. Phys A 324:689–697
Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell (26)2:147–159
Komodakis N (2007) Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans Image Process 16(11):2649–2661
Kusakunniran W, Wu Q, Zhang J et al (2012) Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans Circuits Syst Video Technol 22(6):966–980
Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. Proc IEEE Int Conf Autom Face Gesture Recog 148–155
Leibe B, Schindler K, Gool LV (2007) Coupled detection and trajectory estimation for multi-object tracking. Proc. IEEE Int’l Conf Comput Vis
Li Y, Huang C, Nevatia R (2009) Learning to associate: hybridboosted multi-target tracker for crowded scene. Proc. IEEE Conf. Comput Vis Pattern Recogn
Li Y-R, Shen L, Suter BW (2013) Adaptive inpainting algorithm based on DCT induced wavelet regularization. IEEE Trans Image Process 22(2):752–762
Li B, Chang H, Shan S et al (2010) Low-resolution face recognition via coupled locality preserving mappings. IEEE Signal Process Lett 17(1):20–23
Liu Y, Caselles V (2013) Exemplar-based image inpainting using multiscale graph cuts. IEEE Trans Image Process 22(5):1699–1711
Liu J, Musialski P, Wonka P et al (2013) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–219
Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69
Makhdoomi NA, Gunawan TS, Habaebi MH (2013) Gait Recognition And Effect of Noise on The Recognition Rate. Proc. of the IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur
Masnou S (2002) Disocclusion:a variatiional approach using level lines. IEEE Trans Image Process 11:68–76
Mohan A, Papageorgiou C, Poggio T (2001) Example-based object detection in images by components. IEEE Trans Pattern Anal Mach Intell 23(4):349–361
Papageorgiou C, Poggio T (2000) A trainable system for object detection. Int J Comput Vis 38(1):15–33
Perera A, Srinivas C, Hoogs A et al (2006) Multi-object tracking through simultaneous long occlusions and split-merge conditions. Proc. IEEE Conf. Comput Vis Pattern Recogn 666–673
Peyre G (2010) Texture synthesis with grouplets. IEEE Trans Pattern Anal Mach Intell 32(4):733–746
Rashid ME, Remya S, Wilscy M (2009) Fast tracking of humans in frequently occurring entry, exit and occlusion scenarios. in Proc. ICCTD
Roy A, Sural S, Mukherje J (2012) Gait recognition using pose kinematics and pose energy image. Signal Process 92(3):780–792
Smith K, DG P, J-M O (2005) Using particle to track varying numbers of interacting people. CVPR I:962–969
Tschumperle D (2006) Fast anisotropic smoothing of multi-valued images using curvature-preserving PDEs. Int J Comput Vis 68(1):65–82
Viola PA, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154
Viola PA, Jones MJ, Snow D (2005) Detecting pedestrians using patterns of motion and appearance. Int J Comput Vis 63(2):153–161
Wang L, Ning H, Tan T (2004) Fusion of static, dynamic body biometrics for gait recognition. IEEE Trans Circuits Syst Video Technol 14(2):149–158
Wang Z, Song B, Qin Y et al (2012) Team-moving effect in bi-direction pedestrian flow. Phys A 391:3119–3128
Weng WG, Chen T, Yuan HY et al (2006) Cellular automaton simulation of pedestrian counter flow with different walk velocities[J]. Phys Rev E 74:036102_1–036102_7
Wexler Y, Shechtman E, Irani M (2007) Space-time completion of video. IEEE Trans Pattern Anal Mach Intell 29(3):463–476
Wu JX, Geyer C, Rehg JM (2011) Real-time human detection using contour cues. International Conference on Robotics and Automation (ICRA)
Wu B, Nevatia R (2005) Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. Proc. 10th IEEE Int’l Conf. Comput Vis
Wu B, Nevatia R (2007) Detection and tracking of multiple partially occluded humans by Bayesian combination of edgelet based part detectors. Int J Comput Vis 75:247–266
Wu B, Nevatia R (2007) Cluster boosted tree classifier for multi-view, multi-pose object detection. Proc. 11th IEEE Int’l Conf. Comput Vis
Xu Z, Sun J (2010) Image inpainting by patch propagation using patch sparsity. IEEE Trans Image Process 19(5):1153–1165
Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. Proc. IEEE Conf. Comput Vis Pattern Recognit
Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. Proc. IEEE Conf. Comput Vis Pattern Recogn
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, X., Yang, T. & Xu, J. Multi-gait identification based on multilinear analysis and multi-target tracking. Multimed Tools Appl 75, 6505–6532 (2016). https://doi.org/10.1007/s11042-015-2585-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-015-2585-6