[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Multi-gait identification based on multilinear analysis and multi-target tracking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A new gait pattern is addressed and recognized in this paper. We use a multi-view part detector to detect the body parts of each participant. Multi-gait consisting of more than one participant is tracked using hierarchical association. We use a high-dimension exemplar-based method to realize gait image inpainting and use a tensor’s lowest rank to complete a two-value sequence completion. We use multiple linear tensors to describe multi-gait and realize recognition by a segmented accumulated energy map. The experimental results indicate that the methodology achieves high multi-gait recognition accuracy and has good robustness to dress, carried objects and view variance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Berclaz J, Fleuret F, Turetken E et al (2011) Multiple object tracking using K-shortest paths optimization. IEEE Trans Pattern Anal Mach Intell 33(9):1806–1819

  2. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. Proc IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  3. Brendel W, Amer M, Todorovic S (2011) Multi-object tracking as maximum-weight independent set. Proc. IEEE Conf. Comput Vis Pattern Recognit

  4. Chen X, Yang T (2014) Extraction Method of Gait Feature Based on Human Centroid Trajectory. Proc 2013 Int Conf Comput Eng Netw (CENet 2013) 277:515–523

    Google Scholar 

  5. Chen C, Liang J, Zhao H et al (2009) Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recogn Lett 30:977–984

  6. Choudhury SD, Tjahjadi T (2013) Gait recognition based on shape and motion analysis of silhouette contours. Comput Vis Image Underst 117:1770–1785

    Article  Google Scholar 

  7. Dalal N, Triggs B (2007) Histograms of oriented gradients for human detection. Proc. IEEE Conf. Comput Vis Pattern Recogn

  8. Dalal N, Triggs B, Schmid C (2006) Human detection using oriented histograms of flow and appearance. Proc. Eur Conf. Comput Vis

  9. Fleuret F, Berclaz J, Lengagne R et al (2008) Multi-camera people tracking with a probabilistic occupancy Map. IEEE Trans Pattern Anal Mach Intell 30(2):267–282

    Article  Google Scholar 

  10. Gavrila DM (2007) A Bayesian, exemplar-based approach to hierarchical shape matching. IEEE Trans Pattern Anal Mach Intell 29(8):1408–1421

    Article  Google Scholar 

  11. Guldogan MB, Lindgren D, Gustafsson F et al (2014) Multi-target tracking with PHD filter using doppler-only measurements. Digit Signal Process 27:1–11

  12. Guleryuz OG (2006) Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising—part I: theory. IEEE Trans Image Process 15(3):539–554

    Article  Google Scholar 

  13. Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322

    Article  Google Scholar 

  14. Hayfron-Acquah JB, Nixon MS, Carter JN (2003) Automatic gait recognition by symmetry analysis. Pattern Recogn Lett 24(13):2175–2183

    Article  MATH  Google Scholar 

  15. Hays J, Efros AA (2007) Scene completion using millions of photographs. in Proc SIGGRAPH 1–7

  16. Hays J, Efros AA (2007) Scene completion using millions of photographs. in Proc. SIGGRAPH 1–7

  17. Huang C, Wu B, Nevatia R (2008) Robust object tracking by hierarchical association of detection responses. Proc. Eur Conf. Comput Vis 788–801

  18. Huang C, Li Y, Nevatia R (2013) Multiple target tracking by learning-based hierarchical association of detection responses. IEEE Trans Pattern Anal Mach Intell 35(4):898–910

    Article  Google Scholar 

  19. Huo F et al (2014) Analyzing pedestrian merging flow on a floor–stair interface using an extended lattice gas model. Commun Theor Phys 90(5):501–510

    Google Scholar 

  20. Jeong S, Cho J (2013) A framework for online gait recognition based on multilinear tensor analysis. J Supercomput 65:106–121

    Article  Google Scholar 

  21. Jiang H, Fels S, Little JJ (2007) A linear programming approach for multiple object tracking. Proc. IEEE Conf. Comput Vis Pattern Recogn

  22. JR P, Tu H, Krahnstoever N (2005) Simultaneous estimation of segmentation and shape. CVPR II:486–493

    Google Scholar 

  23. Kim S, Kwak S, Feyereisl J, Han B (2012) Online multi-target tracking by large margin structured learning in ACCV

  24. Kirchner A, Klupfel H, Nishinari K et al (2003) Simulation of competitive egress behavior comparison with aircraft evacuation data. Phys A 324:689–697

  25. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans Pattern Anal Mach Intell (26)2:147–159

  26. Komodakis N (2007) Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Trans Image Process 16(11):2649–2661

    Article  MathSciNet  Google Scholar 

  27. Kusakunniran W, Wu Q, Zhang J et al (2012) Gait recognition under various viewing angles based on correlated motion regression. IEEE Trans Circuits Syst Video Technol 22(6):966–980

    Article  Google Scholar 

  28. Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. Proc IEEE Int Conf Autom Face Gesture Recog 148–155

  29. Leibe B, Schindler K, Gool LV (2007) Coupled detection and trajectory estimation for multi-object tracking. Proc. IEEE Int’l Conf Comput Vis

  30. Li Y, Huang C, Nevatia R (2009) Learning to associate: hybridboosted multi-target tracker for crowded scene. Proc. IEEE Conf. Comput Vis Pattern Recogn

  31. Li Y-R, Shen L, Suter BW (2013) Adaptive inpainting algorithm based on DCT induced wavelet regularization. IEEE Trans Image Process 22(2):752–762

    Article  MathSciNet  Google Scholar 

  32. Li B, Chang H, Shan S et al (2010) Low-resolution face recognition via coupled locality preserving mappings. IEEE Signal Process Lett 17(1):20–23

  33. Liu Y, Caselles V (2013) Exemplar-based image inpainting using multiscale graph cuts. IEEE Trans Image Process 22(5):1699–1711

    Article  MathSciNet  Google Scholar 

  34. Liu J, Musialski P, Wonka P  et al (2013) Tensor completion for estimating missing values in visual data. IEEE Trans Pattern Anal Mach Intell 35(1):208–219

  35. Mairal J, Elad M, Sapiro G (2008) Sparse representation for color image restoration. IEEE Trans Image Process 17(1):53–69

    Article  MathSciNet  MATH  Google Scholar 

  36. Makhdoomi NA, Gunawan TS, Habaebi MH (2013) Gait Recognition And Effect of Noise on The Recognition Rate. Proc. of the IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Kuala Lumpur

    Book  Google Scholar 

  37. Masnou S (2002) Disocclusion:a variatiional approach using level lines. IEEE Trans Image Process 11:68–76

    Article  MathSciNet  Google Scholar 

  38. Mohan A, Papageorgiou C, Poggio T (2001) Example-based object detection in images by components. IEEE Trans Pattern Anal Mach Intell 23(4):349–361

    Article  Google Scholar 

  39. Papageorgiou C, Poggio T (2000) A trainable system for object detection. Int J Comput Vis 38(1):15–33

    Article  MATH  Google Scholar 

  40. Perera A, Srinivas C, Hoogs A et al (2006) Multi-object tracking through simultaneous long occlusions and split-merge conditions. Proc. IEEE Conf. Comput Vis Pattern Recogn 666–673

  41. Peyre G (2010) Texture synthesis with grouplets. IEEE Trans Pattern Anal Mach Intell 32(4):733–746

    Article  Google Scholar 

  42. Rashid ME, Remya S, Wilscy M (2009) Fast tracking of humans in frequently occurring entry, exit and occlusion scenarios. in Proc. ICCTD

  43. Roy A, Sural S, Mukherje J (2012) Gait recognition using pose kinematics and pose energy image. Signal Process 92(3):780–792

    Article  Google Scholar 

  44. Smith K, DG P, J-M O (2005) Using particle to track varying numbers of interacting people. CVPR I:962–969

    Google Scholar 

  45. Tschumperle D (2006) Fast anisotropic smoothing of multi-valued images using curvature-preserving PDEs. Int J Comput Vis 68(1):65–82

    Article  Google Scholar 

  46. Viola PA, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154

    Article  Google Scholar 

  47. Viola PA, Jones MJ, Snow D (2005) Detecting pedestrians using patterns of motion and appearance. Int J Comput Vis 63(2):153–161

    Article  Google Scholar 

  48. Wang L, Ning H, Tan T (2004) Fusion of static, dynamic body biometrics for gait recognition. IEEE Trans Circuits Syst Video Technol 14(2):149–158

    Article  Google Scholar 

  49. Wang Z, Song B, Qin Y et al (2012) Team-moving effect in bi-direction pedestrian flow. Phys A 391:3119–3128

  50. Weng WG, Chen T, Yuan HY et al (2006) Cellular automaton simulation of pedestrian counter flow with different walk velocities[J]. Phys Rev E 74:036102_1–036102_7

    Article  Google Scholar 

  51. Wexler Y, Shechtman E, Irani M (2007) Space-time completion of video. IEEE Trans Pattern Anal Mach Intell 29(3):463–476

    Article  Google Scholar 

  52. Wu JX, Geyer C, Rehg JM (2011) Real-time human detection using contour cues. International Conference on Robotics and Automation (ICRA)

  53. Wu B, Nevatia R (2005) Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors. Proc. 10th IEEE Int’l Conf. Comput Vis

  54. Wu B, Nevatia R (2007) Detection and tracking of multiple partially occluded humans by Bayesian combination of edgelet based part detectors. Int J Comput Vis 75:247–266

    Article  Google Scholar 

  55. Wu B, Nevatia R (2007) Cluster boosted tree classifier for multi-view, multi-pose object detection. Proc. 11th IEEE Int’l Conf. Comput Vis

  56. Xu Z, Sun J (2010) Image inpainting by patch propagation using patch sparsity. IEEE Trans Image Process 19(5):1153–1165

    Article  MathSciNet  Google Scholar 

  57. Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. Proc. IEEE Conf. Comput Vis Pattern Recognit

  58. Zhang L, Li Y, Nevatia R (2008) Global data association for multi-object tracking using network flows. Proc. IEEE Conf. Comput Vis Pattern Recogn

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, T. & Xu, J. Multi-gait identification based on multilinear analysis and multi-target tracking. Multimed Tools Appl 75, 6505–6532 (2016). https://doi.org/10.1007/s11042-015-2585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2585-6

Keywords

Navigation