[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Exploring Temporal Analytics in Fog-Cloud Architecture for Smart Office HealthCare

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Ever since the boost realized in Information and Communication Technology (ICT), market is flooded with high-end multi-tasking devices, presenting a real-time computational environment for technologies like Internet of Things (IoT). With computation at user-end, it provides a fog-based computing paradigm to generate time senstive results, which along with cloud storage presents a comprehensive Fog-Cloud computing paradigm. Because of these reasons, the work presented in this paper focuses on utilizing the potential of IoT Technology to provide a novel Fog-Cloud architecture for efficient healthcare services in smart office. Specifically, a Fog-Cloud architecture has been proposed to monitor and analyze various health attributes of a person during his working hours. Moreover, the framework indulges various activities in the ambient office environment with the purpose of analyzing it for health severity. In order to realize this, a probabilistic measure, named as Severity Index (SI) is defined to evaluate the adverse effects of different activities on personal health. Finally, an application scenario of temporal healthcare predictive monitoring and alert generation is discussed to depict the ideology of Smart Office Healthcare. In order to validate the system, an experimental implmentation is performed on heterogenous datasets. The results obtained in comparison to state-of-the-art techniques show that the proposed model is highly efficient and accurate for providing appropriate healthcare environment during working hours of a person in a smart office.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst 29(7):1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  2. Da Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inf 10(4):2233–2243. https://doi.org/10.1109/TII.2014.2300753

    Article  Google Scholar 

  3. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols and applications. IEEE Commun Surv Tutor. [Online]. https://doi.org/10.1109/COMST.2015.244-295

  4. Varshney U (2014) A model for improving quality of decisions in mobile health. Decis Support Syst 62:66–77. https://doi.org/10.1016/j.dss.2014.03.005

    Article  Google Scholar 

  5. Xu B, Xu L, Cai H, Jiang L, Luo Y, Gu Y (2015) The design of an m-Health monitoring system based on a cloud computing platform. Enterp Inf Syst. [Online]. https://doi.org/10.1080/17517575.2015.1053416

  6. Agoulmine N, Ray P, Wu TH (2012) Efficient and cost-effective communications in ubiquitous healthcare: wireless sensors, devices and solutions. IEEE Commun Mag 50(5):90–91. https://doi.org/10.1109/MCOM.2012.6194387

    Article  Google Scholar 

  7. He C, Fan X, Li Y (2013) Toward ubiquitous healthcare services with a novel efficient cloud platform. IEEE Trans Biomed Eng 60(1):230–234. https://doi.org/10.1109/TBME.2012.2222404

    Article  Google Scholar 

  8. Xu B, Da Xu L, Cai H, Xie C, Hu J, Bu F (2014) Ubiquitous data accessing method in iot-based information system for emergency medical services. IEEE Trans Ind Inform 10(2):1578–1586. https://doi.org/10.1109/TII.2014.2306382

    Article  Google Scholar 

  9. Hossain M S, Muhammad G (2016) Cloud-assisted industrial internet of things (IIoT) enabled framework for health monitoring. Comput Netw. [Online]. https://doi.org/10.1016/j.comnet.2016.01.009

  10. World Employment and Social Outlook: Trends (2015) [Online] www.ilo.org/global/research/globalreports/weso/2015/langen/index.htm

  11. Yu W, Lao XQ, Pang S, Zhou J, Zhou A, Zou J, Mei L, Yu IT (2013) A survey of occupational health hazards among 7,610 female workers in Chinas electronics industry. Arch Environ Occup Health 68(4):190–205. https://doi.org/10.1080/19338244.2012.701244

    Article  Google Scholar 

  12. Vimalanathan TR, Komalanathan B (2014) The effect of indoor office environment on the work performance, health and well-being of office workers. J Environ Heal Sci Eng. [Online] https://doi.org/10.1186/s40201-014-0113-7

  13. Park H-A (2011) Pervasive healthcare computing: EMR/EHR, wireless and health monitoring, in Healthc. Inform Res 17(1):89–91. https://doi.org/10.4258/hir.2011.17.1.89

    Google Scholar 

  14. Bonomi F, Milito R, Zhu J, Addepalli S (2012) Fog computing and its role in the internet of things. In: Proceedings of the first edition of the MCC workshop on mobile cloud computing. ACM, pp 13–16. https://doi.org/10.1145/2342509.2342513

  15. Amendola S, Lodato R, Manzari S, Occhiuzzi C, Marrocco G (2014) RFID technology for IoT based personal healthcare in SmartSpaces. IEEE Internet Things J 1(2):144–152. https://doi.org/10.1109/JIOT.2014.2313981

    Article  Google Scholar 

  16. Zhu N, Diethe T, Camplani M, Tao L, Burrows A, Twomey N (2015) Bridging e-Health and the internet of things: the SPHERE project. IEEE Intell Syst 30(4):39–46. https://doi.org/10.1109/MIS.2015.57

    Article  Google Scholar 

  17. Suh M, Chen C-A, Woodbridge J, Tu MK, Kim JI, Nahapetian A, Evangelista LS, Sarrafzadeh M (2011) A remote patient monitoring system for congestive heart failure. J Med Syst 35(5):1165–1179. https://doi.org/10.1007/s10916-011-9733-y

    Article  Google Scholar 

  18. Fang S, Da Xu L, Member S, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014) An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans Ind Inform 10(2):1596–1605. https://doi.org/10.1109/TII.2014.2302638

    Article  Google Scholar 

  19. Naja B, Aminian K, Paraschiv-Ionescu A, Loew F, Bla CJ, Robert P (2003) Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. Biomed Eng IEEE Trans 50(6):711–723. https://doi.org/10.1109/TBME.2003.812189

    Article  Google Scholar 

  20. Fang S, Xu L, Member S, Pei H, Liu Y, Liu Z, Zhu Y (2014) An integrated approach to snowmelt flood forecasting in water resource management. IEEE Trans Ind Inform 10(1):548–558. https://doi.org/10.1109/TII.2013.2257807

    Article  Google Scholar 

  21. Sun E, Zhang X, Li Z (2012) The internet of things (IOT) and cloud computing (CC) based tailings dam monitoring and pre-alarm system in mines. Saf Sci 50(4):811–815. https://doi.org/10.1016/j.ssci.2011.08.028

    Article  Google Scholar 

  22. Behrendt F, Kiefer C (2016) Smart e-bike monitoring system: real-time open source and open hardware GPS assistance and sensor data for electrically-assisted bicycles, IET. Intell Transp Syst 10(2):79–88. https://doi.org/10.1049/iet-its.2014.0251

    Article  Google Scholar 

  23. Yang G, Xie L, Mntysalo M, Zhou X, Pang Z, Da Xu L, Kao-Walter S, Chen Q, Zheng LR (2014) A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. IEEE Trans Ind Inform 10(4):2180–2191. https://doi.org/10.1109/TII.2014.2307795

    Article  Google Scholar 

  24. Catarinucci L, De Donno D, Mainetti L, Palano L, Patrono L, Stefanizzi M, Tarricone L (2015) An IoT-Aware architecture for smart healthcare systems. IEEE Internet Things J 2(6):515–526. https://doi.org/10.1109/JIOT.2015.2417684

    Article  Google Scholar 

  25. Suciu G, Suciu V, Martian A, Craciunescu R, Vulpe A, Marcu I, Halunga S, Fratu O (2015) Big data, internet of things and cloud convergence- an architecture for secure e-health applications. J Med Syst 39:11. https://doi.org/10.1007/s10916-015-0327-y

    Article  Google Scholar 

  26. Fanucci L, Saponara S, Bacchillone T, Donati M, Barba P, Sanchez-Tato I, Carmona C (2013) Sensing devices and sensor signal processing for remote monitoring of vital signs in CHF patients. IEEE Trans Instrum Meas 62(3):553–569. https://doi.org/10.1109/TIM.2012.2218681

    Article  Google Scholar 

  27. Mata P, Chamney A, Viner G, Archibald D, Peyton L (2015) A development framework for mobile healthcare monitoring apps. Pers Ubiquitous Comput 19(3):623–633. https://doi.org/10.1007/s00779-015-0849-9

    Article  Google Scholar 

  28. Clarke M, Schluter P, Reinhold B, Reinhold B (2014) Designing robust and reliable timestamps for remote patient monitoring. IEEE J Biomed Heal Inform 19(5):1718–1723. https://doi.org/10.1109/JBHI.2014.2343632

    Article  Google Scholar 

  29. Ahmad M, Amin MB, Hussain S, Kang BH, Cheong T, Lee S (2016) Health fog: a novel framework for health and wellness applications. J Supercomput. [Online]. https://doi.org/10.1007/s11227016-1634-x

  30. Laura EJM, Duchessi PJ (2006) A Bayesian belief network for IT implementation decision support. Decis Support Syst 42(3):1573–1588. https://doi.org/10.1016/j.dss.2006.01.003

    Article  Google Scholar 

  31. Sacchi L, Larizza C, Combi C, Bellazzi R (2007) Data mining with temporal abstractions: learning rules from time series. Data Min Knowl Discov 15(2):217–247. https://doi.org/10.1007/s10618-007-0077-7

    Article  MathSciNet  Google Scholar 

  32. Amazon Cloud Services. Last Accessed on May 15, 2016 [Online] Available: https://aws.amazon.com/ec2/

  33. Stata.Last Accessed on May 20, 2017 [Online]. Available: http://www.stata.com/

  34. Moskovitch R, Shahar Y (2009) Medical temporal-knowledge discovery via temporal abstraction AMIA. PMC2815492

  35. Wang F, Zhao B, Zhang C (2010) Linear time maximum margin clustering. IEEE Trans Neural Netw 21(2):319–332. https://doi.org/10.1109/TNN.2009.2036998

    Article  Google Scholar 

  36. Shahar Y (1997) A framework for knowledge-based temporal abstraction. Artif Intell 90(1):79–133. https://doi.org/10.1016/S0004-3702(96)00025-2

    Article  MATH  Google Scholar 

  37. Hripcsak G, Rothschild AS (2005) Agreement, the f-measure, and reliability in information retrieval. J Amer Med Inform Assoc 12(3):296–298. https://doi.org/10.1197/jamia.M1733

    Article  Google Scholar 

  38. Cheng Z, Li P, Wang J, Guo S (2015) Just-in-time code offloading for wearable. Computing 3(1):74–83. https://doi.org/10.1109/TETC.2014.2387688

    Google Scholar 

  39. Lei H, Xia J, Guo F, Zou Y, Chen W, Liu Z (2016) Visual exploration of latent ranking evolutions in time series. J Visual, 1–13. https://doi.org/10.1007/s12650-016-0349-7

  40. Hossain MS (2015) Cloud-supported cyber–physical localization framework for patients monitoring. https://doi.org/10.1109/JSYST.2015.2470644

  41. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surveys Tutor 17(4):2347–2376. https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  42. Wang K, Shao Y, Shu L, Han G, Zhu C (2015) LDPA: a local data processing architecture in ambient assisted living communications. IEEE Commun Mag 53(1):56–63. https://doi.org/10.1109/MCOM.2015.7010516

    Article  Google Scholar 

  43. Wang K, Shao Y, Shu L, Zhu C, Zhang Y (2016) Mobile big data fault-tolerant processing for eHealth networks. IEEE Network 30(1):36–42. https://doi.org/10.1109/MNET.2016.7389829

    Article  Google Scholar 

  44. Bhatia M, Sood SK (2016) Temporal informative analysis in smart-ICU monitoring: M-HealthCare perspective. J Med Syst 40(8):1–15. https://doi.org/10.1007/s10916-016-0547-9

    Article  Google Scholar 

  45. Plaut DC, Vande Velde AK (2017) Statistical learning of parts and wholes: a neural network approach. J Exp Psychol Gen 146:3. https://doi.org/10.1037/xge0000262

    Article  Google Scholar 

  46. Maffiuletti NA, Gorelick M, Kramers-de Quervain I, Bizzini M, Munzinger JP, Tomasetti S, Stacoff A (2008) Concurrent validity and intrasession reliability of the IDEEA accelerometry system for the quantification of spatiotemporal gait parameters. Gait Posture 27(1):160–163. https://doi.org/10.1016/j.gaitpost.2007.01.003

    Article  Google Scholar 

  47. Doukas C, Maglogiannis I (2012) Bringing IoT and cloud computing towards pervasive Healthcare. In: Proc. ICIMISUC, pp 922–926. https://doi.org/10.1109/IMIS.2012.26

  48. Quattoni A, Wang S, Morency LP, Collins M, Darrell T (2007) Hidden conditional random fields. IEEE Trans Pattern Anal Mach Intell 29:10. https://doi.org/10.1109/TPAMI.2007.1124

    Article  Google Scholar 

  49. Stylios CD, Kreinovich V (2015) Symbolic aggregate approXimation (SAX) under interval uncertainty. In: Fuzzy information processing society (NAFIPS) held jointly with 2015 5th World Conference on Soft Computing (WConSC), 2015 Annual Conference of the North American. IEEE, pp 1–7. https://doi.org/10.1109/NAFIPS-WConSC.2015.7284164

  50. Ding G, Guo Y, Zhou J, Gao Y (2016) Large-scale cross-modality search via collective matrix factorization hashing. IEEE Trans Image Process 25(11):5427–5440

    Article  MathSciNet  MATH  Google Scholar 

  51. Rothney MP, Neumann M, Béziat A, Chen KY (2007) An artificial neural network model of energy expenditure using nonintegrated acceleration signals. J Appl Physiol 103(4):1419–1427. https://doi.org/10.1152/japplphysiol.00429.2007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munish Bhatia.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, M., Sood, S.K. Exploring Temporal Analytics in Fog-Cloud Architecture for Smart Office HealthCare. Mobile Netw Appl 24, 1392–1410 (2019). https://doi.org/10.1007/s11036-018-0991-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-018-0991-5

Keywords

Navigation