[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Using in vitro models of Alzheimer’s disease (AD), we found that the toxic effects of amyloid beta 25–35 (Aβ25–35) on the neurotrophin brain-derived neurotrophic factor (BDNF) were counteracted by pre-incubation with neuropeptide Y (NPY), a neuropeptide expressed within the central nervous system. Nonetheless, the mechanism of action of NPY on BDNF neuronal production in the presence of Aβ is not known. BDNF expression might be directly regulated by microRNA (miRs), small non-coding DNA fragments that regulate the expression of target genes. Thus, there is the possibility that miRs alterations are present in AD-affected neurons and that NPY influences miR expression. To test this hypothesis, we exposed NPY-pretreated primary rat cortical neurons to Aβ25–35 and measured miR-30a-5p (a member of the miR-30a family involved in BDNF tuning expression) and BDNF mRNA and protein expression after 24 and 48 h. Our results demonstrated that pre-treatment with NPY decreased miR-30a-5p expression and increased BDNF mRNA and protein expression at 24 and 48 h of incubation with Aβ. Therefore, this study demonstrates that NPY modulates BDNF and its regulating microRNA miR-30a-5p in opposite direction with a mechanism that possibly contributes to the neuroprotective effect of NPY in rat cortical neurons exposed to Aβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Finch CE, Cohen DM (1997) Aging, metabolism, and Alzheimer disease: review and hypotheses. Exp Neurol 143:82–102. doi:10.1006/exnr.1996.6339

    Article  CAS  PubMed  Google Scholar 

  2. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890. doi:10.1016/S0006-291X(84)80190-4

    Article  CAS  PubMed  Google Scholar 

  3. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125. doi:10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  4. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124. doi:10.1016/S0301-0082(00)00014-9

    Article  CAS  PubMed  Google Scholar 

  5. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow YW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7:695–702. doi:10.1016/0896-6273(91)90273-3

    Article  CAS  PubMed  Google Scholar 

  6. Connor B, Young D, Yan Q, Faull QRLM, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Mol Brain Res 49:71–81. doi:10.1016/S0169-328X(97)00125-3

    Article  CAS  PubMed  Google Scholar 

  7. Angelucci F, Spalletta G, Iulio FD, Ciaramella A, Salani F, Varsi AE, Gianni W, Sancesario G, Caltagirone C, Bossu P (2010) Alzheimer’s disease (AD) and mild cognitive impairment (MCI) patients are characterized by increased BDNF serum levels. Curr Alzheimer Res 7:15–20. doi:10.2174/156720510790274473

    Article  CAS  PubMed  Google Scholar 

  8. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59:201–220. doi:10.1016/j.brainresrev.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  9. Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, Eschweiler GW, Leyhe T (2011) Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol 14:399–404. doi:10.1017/S1461145710001008

    Article  CAS  PubMed  Google Scholar 

  10. Croce N, Dinallo V, Ricci V, Federici G, Caltagirone C, Bernardini S, Angelucci F (2011) Neuroprotective effect of neuropeptide Y against beta-amyloid 25–35 toxicity in SH-SY5Y neuroblastoma cells is associated with increased neurotrophin production. Neurodener Dis 8:300–309. doi:10.1159/000323468

    Article  CAS  Google Scholar 

  11. Rose JB, Crews L, Rockenstein E, Adame A, Mante M, Hersh LB, Gage FH, Spencer B, Potkar R, Marr RA, Masliah E (2009) Neuropeptide Y fragments derived from neprilysin processing are neuroprotective in a transgenic model of Alzheimer’s disease. J Neurosci 29:1115–1125. doi:10.1523/JNEUROSCI.4220-08.2009

    Article  CAS  PubMed  Google Scholar 

  12. Croce N, Ciotti MT, Gelfo F, Cortelli S, Federici G, Caltagirone C, Bernardini S, Angelucci F (2012) Neuropeptide Y protects rat cortical neurons against beta-amyloid toxicity and re-establishes synthesis and release of nerve growth factor. ACS Chem Neurosci 3:312–318. doi:10.1021/cn200127e

    Article  CAS  PubMed  Google Scholar 

  13. Numakawa T, Richards M, Adachi N, Kishi S, Kunugi H, Hashido K (2011) MicroRNA function and neurotrophin BDNF. Neurochem Int 59:551–558. doi:10.1016/j.neuint.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  14. Mellios N, Huang HS, Grigorenko A, Rogaev E, Akbarian S (2008) A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of BDNF in prefrontal cortex. Hum Mol Genet 17:3030–3042. doi:10.1093/hmg/ddn201

    Article  CAS  PubMed  Google Scholar 

  15. di Penta A, Mercaldo V, Florenzano F, Munck S, Ciotti MT, Zalfa F, Mercanti D, Molinari M, Bagni C, Achsel T (2009) Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol 184:423–435. doi:10.1083/jcb.200807033

    Article  PubMed  Google Scholar 

  16. Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS (1995) The toxicity in vitro of beta-amyloid protein. Biochem J 311:1–16

    CAS  PubMed  Google Scholar 

  17. Pike CJ, Walencewicz-Wasserman AJ, Kosmoski J, Cribbs DH, Glabe CG, Cotman CW (1995) Structure-activity analyses of beta-amyloid peptides: contributions of the beta 25–35 region to aggregation and neurotoxicity. J Neurochem 64:253–265. doi:10.1046/j.1471-4159.1995.64010253.x

    Article  CAS  PubMed  Google Scholar 

  18. Shearman MS, Ragan CI, Iversen LL (1994) Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci USA 91:1470–1474. doi:10.1073/pnas.91.4.1470

    Article  CAS  PubMed  Google Scholar 

  19. Terzi E, Holzemann G, Seelig J (1994) Reversible random coil-beta-sheet transition of the Alzheimer beta-amyloid fragment (25–35). Biochemistry 33:1345–1350. doi:10.1021/bi00172a009

    Article  CAS  PubMed  Google Scholar 

  20. Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci USA 91:3270–3274. doi:10.1073/pnas.91.8.3270

    Article  CAS  PubMed  Google Scholar 

  21. Hansel DE, Eipper BA, Ronnett GV (2001) Neuropeptide Y functions as a neuroproliferative factor. Nature 410:940–944. doi:10.1038/35073601

    Article  CAS  PubMed  Google Scholar 

  22. Zukowska-Grojec Z, Pruszczyk P, Colton C, Yao J, Shen GH, Myers AK, Wahlestedt C (1993) Mitogenic effect of neuropeptide Y in rat vascular smooth muscle cells. Peptides 14:263–268. doi:10.1016/0196-9781(93)90040-N

    Article  CAS  PubMed  Google Scholar 

  23. Protas L, Qu J, Robinson RB (2003) Neuropeptide Y: neurotransmitter or trophic factor in the heart? News Physiol Sci 18:181–185

    CAS  PubMed  Google Scholar 

  24. Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1045–1062. doi:10.1089/cmb.2005.12.1047

    Google Scholar 

  25. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114. doi:10.1038/nrg2290

    Article  CAS  PubMed  Google Scholar 

  26. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  27. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439:283–289. doi:10.1038/nature04367

    Article  CAS  PubMed  Google Scholar 

  28. Hébert SS, Horré K, Nicolaï L, Bergmans B, Papadopoulou AS, Delacourte A, De Strooper B (2009) MicroRNA regulation of Alzheimer’s Amyloid precursor protein expression. Neurobiol Dis 33:422–428. doi:10.1016/j.nbd.2008.11.009

    Article  PubMed  Google Scholar 

  29. Fang M, Wang J, Zhang X, Geng Y, Hu Z, Rudd JA, Ling S, Chen W, Han S (2012) The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett 209:94–105

    Article  CAS  PubMed  Google Scholar 

  30. Lukiw WJ, Alexandrov PN (2012) Regulation of complement factor H (CFH) by multiple miRNAs in Alzheimer’s disease (AD) brain. Mol Neurobiol 46:11–19. doi:10.1007/s12035-012-8234-4

    Article  CAS  PubMed  Google Scholar 

  31. Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–1623. doi:10.1126/science.7907431

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Liu Z, Xu X, Yang X, Wang H, Li Z (2010) Nerve growth factor regulates galanin and neuropeptide Y expression in primary cultured superior cervical ganglion neurons. Pharmazie 65:219–223

    CAS  PubMed  Google Scholar 

  33. Yoshimura R, Ito K, Endo Y (2009) Differentiation/maturation of neuropeptide Y neurons in the corpus callosum is promoted by brain-derived neurotrophic factor in mouse brain slice cultures. Neurosci Lett 450:262–265. doi:10.1016/j.neulet.2008.12.010

    Article  CAS  PubMed  Google Scholar 

  34. Mellios N, Huang H-S, Baker SP, Galdzicka M, Ginns E, Akbarian S (2009) Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 65:1006–1014. doi:10.1016/j.biopsych.2008.11.019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grant nEUROsyn Italian Ministry of Health (RC2008) in the frame of ERA-Net Neuron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Angelucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Croce, N., Gelfo, F., Ciotti, M.T. et al. NPY modulates miR-30a-5p and BDNF in opposite direction in an in vitro model of Alzheimer disease: a possible role in neuroprotection?. Mol Cell Biochem 376, 189–195 (2013). https://doi.org/10.1007/s11010-013-1567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1567-0

Keywords

Navigation