Abstract
In this paper, we prove the existence and uniqueness of a solution for a second-order set-valued differential equation with three-point boundary conditions, where the perturbation is measurable with respect to the time variable and Lipschitzian with respect to the second and third variables.
Similar content being viewed by others
References
D. Azzam-Laouir and W. Boukrouk, A three point boundary value problem for a delay set-valued second order differential equation with Hukuhara derivatives. Prepublications of the Laboratory of Pure and Applied Mathematics, University of Jijel, 2014.
D. Azzam-Laouir, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Control Cybernet. 31 (2002), 659–693.
F. S. De Blasi and F. Iervolino, Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital. 2 (1969), 491–501.
F. S. De Blasi, V. Lakshmikantham and T. Gnana Bhaskar, An existence theorem for set differential inclusions in a semilinear metric space. Control Cybernet. 36 (2007), 571–582.
F. S. De Blasi and A. Lasota, Daniell’s method in the theory of the Aumann-Hukuhara integral of set-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 45 (1968), 252–256.
C. J. Budd, G. W. Hunt and M. A. Peletier, Self-similar fold evolution under prescribed end-shortening. Math. Geol. 31 (1999), 989–1005.
M. W. Derstine, H. M. Gibbs, F. A. Hopf and D. L. Kaplan, Bifurcation gap in a hybrid optically bistable system. Phys. Rev. A 26 (1982), 3720–3722.
A. Doelman and V. Rottschäfer, Singularly perturbed and nonlocal modulation equations for systems with interacting instability mechanisms. J. Nonlinear Sci. 7 (1997), 371–409.
Dugundji J.: An extension of Tietze’s theorem. Pacific J. Math. 1, 353–367 (1951)
J. Dugundji, Topology. Allyn and Bacon, Boston, Mass., 1966.
O. I. Gaidukevich and V. K. Maslyuchenko, New generalizations of the Scorza-Dragoni theorem. Ukranian Math. J. 52 (2000), 1010–1017.
Horvath C. D.: Contractibility and generalized convexity. J. Math. Anal. Appl. 156, 341–357 (1991)
C. D. Horvath, Extentsion and selection theorems in topological spaces with a generalied convexity structure. Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), 253–269.
Hukuhara M.: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcial. Ekvac. 10, 205–223 (1967)
Hukuhara M.: Sur l’application semi-continue dont la valeur est un compact convexe. Funkcial. Ekvac. 10, 43–66 (1967)
J. V. Llinares, Abstract convexity, some relations and applications. Optimization 51 (2002), 797–818.
M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems. Science 197 (1977), 287–289.
M. T. Malinowski, Interval Cauchy problem with a second type Hukuhara derivative. Inform. Sci. 213 (2012), 94–105.
M. T. Malinowski, Interval differential equations with a second type Hukuhara derivative. Appl. Math. Lett. 24 (2011), 2118–2123.
M. T. Malinowski, On a new set-valued stochastic integral with respect to semimartingales and its applications. J. Math. Anal. Appl. 408 (2013), 669–680.
M. T. Malinowski, On set differential equations in Banach spaces-a second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 289–305.
M. T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations. Appl. Math. Comput. 218 (2012), 9427–9437.
B. J. McCartin, Exponential fitting of the delayed recruitment/renewal equation. J. Comput. Appl. Math. 136 (2001), 343–356.
E. Pap (ed.), Handbook of Measure Theory. Vol. 2, Elsevier Science B.V., Amsterdam, 2002.
B. Piąatek, On the continuity of the integrable multifunctions. Opuscula Math. 29 (2009), 81–88.
M. Piszczek, On a multivalued second order differential problem with Hukuhara derivative. Opuscula Math. 28 (2008), 151–161.
Piszczek M.: On multivalued cosine families. J. Appl. Anal. 13, 57–76 (2007)
A. V. Plotnikov and P. I. Rashkov, Averaging in differential equations with Hukuhara derivative and delay. Funct. Differ. Equ. 8 (2001), 371–381.
Radström H.: An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3, 165–169 (1952)
Smajdor A.: On a multivalued differential problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13, 1877–1882 (2003)
L. Stefanini and B. Bede, Generalized Hukuhara differentiability of intervalvalued functions and interval differential equations. Nonlinear Anal. 71 (2009), 1311–1328.
S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shell. McGraw–Hill, New York, 1959.
M. Ważewska-Czyżewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells. Mat. Stos. (3) 6 (1976), 23–40.
Author information
Authors and Affiliations
Corresponding author
Additional information
To Professor Andrzej Granas with profound admiration
Rights and permissions
About this article
Cite this article
Azzam-Laouir, D., Boukrouk, W. Second-order set-valued differential equations with boundary conditions. J. Fixed Point Theory Appl. 17, 99–121 (2015). https://doi.org/10.1007/s11784-015-0236-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11784-015-0236-1