[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Second-order set-valued differential equations with boundary conditions

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence and uniqueness of a solution for a second-order set-valued differential equation with three-point boundary conditions, where the perturbation is measurable with respect to the time variable and Lipschitzian with respect to the second and third variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Azzam-Laouir and W. Boukrouk, A three point boundary value problem for a delay set-valued second order differential equation with Hukuhara derivatives. Prepublications of the Laboratory of Pure and Applied Mathematics, University of Jijel, 2014.

  2. D. Azzam-Laouir, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces. Control Cybernet. 31 (2002), 659–693.

  3. F. S. De Blasi and F. Iervolino, Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Unione Mat. Ital. 2 (1969), 491–501.

  4. F. S. De Blasi, V. Lakshmikantham and T. Gnana Bhaskar, An existence theorem for set differential inclusions in a semilinear metric space. Control Cybernet. 36 (2007), 571–582.

  5. F. S. De Blasi and A. Lasota, Daniell’s method in the theory of the Aumann-Hukuhara integral of set-valued functions. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 45 (1968), 252–256.

  6. C. J. Budd, G. W. Hunt and M. A. Peletier, Self-similar fold evolution under prescribed end-shortening. Math. Geol. 31 (1999), 989–1005.

  7. M. W. Derstine, H. M. Gibbs, F. A. Hopf and D. L. Kaplan, Bifurcation gap in a hybrid optically bistable system. Phys. Rev. A 26 (1982), 3720–3722.

  8. A. Doelman and V. Rottschäfer, Singularly perturbed and nonlocal modulation equations for systems with interacting instability mechanisms. J. Nonlinear Sci. 7 (1997), 371–409.

  9. Dugundji J.: An extension of Tietze’s theorem. Pacific J. Math. 1, 353–367 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Dugundji, Topology. Allyn and Bacon, Boston, Mass., 1966.

  11. O. I. Gaidukevich and V. K. Maslyuchenko, New generalizations of the Scorza-Dragoni theorem. Ukranian Math. J. 52 (2000), 1010–1017.

  12. Horvath C. D.: Contractibility and generalized convexity. J. Math. Anal. Appl. 156, 341–357 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. C. D. Horvath, Extentsion and selection theorems in topological spaces with a generalied convexity structure. Ann. Fac. Sci. Toulouse Math. (6) 2 (1993), 253–269.

  14. Hukuhara M.: Intégration des applications mesurables dont la valeur est un compact convexe. Funkcial. Ekvac. 10, 205–223 (1967)

    MATH  MathSciNet  Google Scholar 

  15. Hukuhara M.: Sur l’application semi-continue dont la valeur est un compact convexe. Funkcial. Ekvac. 10, 43–66 (1967)

    MATH  MathSciNet  Google Scholar 

  16. J. V. Llinares, Abstract convexity, some relations and applications. Optimization 51 (2002), 797–818.

  17. M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems. Science 197 (1977), 287–289.

  18. M. T. Malinowski, Interval Cauchy problem with a second type Hukuhara derivative. Inform. Sci. 213 (2012), 94–105.

  19. M. T. Malinowski, Interval differential equations with a second type Hukuhara derivative. Appl. Math. Lett. 24 (2011), 2118–2123.

  20. M. T. Malinowski, On a new set-valued stochastic integral with respect to semimartingales and its applications. J. Math. Anal. Appl. 408 (2013), 669–680.

  21. M. T. Malinowski, On set differential equations in Banach spaces-a second type Hukuhara differentiability approach. Appl. Math. Comput. 219 (2012), 289–305.

  22. M. T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations. Appl. Math. Comput. 218 (2012), 9427–9437.

  23. B. J. McCartin, Exponential fitting of the delayed recruitment/renewal equation. J. Comput. Appl. Math. 136 (2001), 343–356.

  24. E. Pap (ed.), Handbook of Measure Theory. Vol. 2, Elsevier Science B.V., Amsterdam, 2002.

  25. B. Piąatek, On the continuity of the integrable multifunctions. Opuscula Math. 29 (2009), 81–88.

  26. M. Piszczek, On a multivalued second order differential problem with Hukuhara derivative. Opuscula Math. 28 (2008), 151–161.

  27. Piszczek M.: On multivalued cosine families. J. Appl. Anal. 13, 57–76 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. A. V. Plotnikov and P. I. Rashkov, Averaging in differential equations with Hukuhara derivative and delay. Funct. Differ. Equ. 8 (2001), 371–381.

  29. Radström H.: An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc. 3, 165–169 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  30. Smajdor A.: On a multivalued differential problem. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13, 1877–1882 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. L. Stefanini and B. Bede, Generalized Hukuhara differentiability of intervalvalued functions and interval differential equations. Nonlinear Anal. 71 (2009), 1311–1328.

  32. S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shell. McGraw–Hill, New York, 1959.

  33. M. Ważewska-Czyżewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells. Mat. Stos. (3) 6 (1976), 23–40.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalila Azzam-Laouir.

Additional information

To Professor Andrzej Granas with profound admiration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzam-Laouir, D., Boukrouk, W. Second-order set-valued differential equations with boundary conditions. J. Fixed Point Theory Appl. 17, 99–121 (2015). https://doi.org/10.1007/s11784-015-0236-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0236-1

Mathematics Subject Classification

Keywords

Navigation