[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A survey on super-resolution imaging

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The key objective of super-resolution (SR) imaging is to reconstruct a higher-resolution image based on a set of images, acquired from the same scene and denoted as ‘low-resolution’ images, to overcome the limitation and/or ill-posed conditions of the image acquisition process for facilitating better content visualization and scene recognition. In this paper, we provide a comprehensive review of SR image and video reconstruction methods developed in the literature and highlight the future research challenges. The SR image approaches reconstruct a single higher-resolution image from a set of given lower-resolution images, and the SR video approaches reconstruct an image sequence with a higher-resolution from a group of adjacent lower-resolution image frames. Furthermore, several SR applications are discussed to contribute some insightful comments on future SR research directions. Specifically, the SR computations for multi-view images and the SR video computation in the temporal domain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaudhuri S.: Super-Resolution Imaging. Kluwer Academic Publishers, Boston (2001)

    Google Scholar 

  2. Katsaggelos A.K., Molina R., Mateos J.: Super Resolution of Images and Video. Morgan & Claypool, San Rafael (2007)

    Google Scholar 

  3. Bannore V.: Iterative-Interpolation Super-Resolution Image Reconstruction: A Computationally Efficient Technique. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  4. Milanfar P.: Super-Resolution Imaging. CRC Press, Boca Raton (2010)

    Google Scholar 

  5. Kang M.G., Chaudhuri S.: Super-resolution image reconstruction. IEEE Signal Process. Mag. 20, 19–20 (2003)

    Article  Google Scholar 

  6. Bose N.K., Chan R.H., Ng M.K.: Special issue on high resolution image reconstruction. Int. J. Imaging Syst. Technol. 14(2–3), 35–145 (2004)

    Article  Google Scholar 

  7. Ng M.K., Chan T., Kang M.G., Milanfar P.: Special issue on super-resolution imaging: analysis, algorithms, and applications. EURASIP J. Appl. Signal Process. 2006, 1–2 (2006)

    Google Scholar 

  8. Ng M.K., Lam E., Tong C.S.: Special issue on superresolution imaging: theory, algorithms and applications. Multidimens. Syst. Signal Process. 18, 55–188 (2007)

    Article  Google Scholar 

  9. Hardie R.C., Schultz R.R., Barner K.E.: Special issue on super-resolution enhancement of digital video. EURASIP J. Appl. Signal Process. 2007, 1–3 (2007)

    Google Scholar 

  10. Katsaggelos A.K., Molina R.: Special issue on super resolution. Comput. J. 52, 1–167 (2008)

    Article  Google Scholar 

  11. Hunt B.R.: Superresolution of images: algorithms, principles, performance. Int. J. Imaging Syst. Technol. 6(4), 297–304 (1995)

    Article  Google Scholar 

  12. Borman, S., Stevenson R.L.: Spatial resolution enhancement of low-resolution image sequences: a comprehensive review with directions for future research. University of Notre Dame, Technical Report (1998)

  13. Borman, S., Stevenson, R.L.: Super-resolution from image sequences—a review. In: Proceedings of the IEEE Midwest Symposium on Circuits and Systems, pp. 374–378. Notre Dame, IN (1998)

  14. Park S.C., Park M.K., Kang M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20, 21–36 (2003)

    Article  Google Scholar 

  15. Ng M.K., Bose N.K.: Mathematical analysis of super-resolution methodology. IEEE Signal Process. Mag. 20, 62–74 (2003)

    Article  Google Scholar 

  16. Capel D., Zisserman A.: Computer vision applied to super resolution. IEEE Signal Process. Mag. 20, 75–86 (2003)

    Article  Google Scholar 

  17. Choi E., Choi J., Kang M.G.: Super-resolution approach to overcome physical limitations of imaging sensors: an overview. Int. J. Imaging Syst. Technol. 14, 36–46 (2004)

    Article  Google Scholar 

  18. Farsiu S., Robinson D., Elad M., Milanfar P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14, 47–57 (2004)

    Article  Google Scholar 

  19. Ouwerkerk J.D.: Image super-resolution survey. Image Vis. Comput. 24, 1039–1052 (2006)

    Article  Google Scholar 

  20. Cristobal, G., Gila, E., Sroubek, F., Flusser, J., Miravet, C., Rodriguez, F.B.: Superresolution imaging: a survey of current techniques. In: Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms, Architectures, and Implementations, pp. 70740C.1–70740C.18 (2008)

  21. Tsai R.Y., Huang T.S.: Multiframe image restoration and registration. In: Huang, T.S. (ed.) Advances in Computer Vision and Image Processing, JAI Press Inc., London (1984)

    Google Scholar 

  22. Max B., Wolf E.: Principles of Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  23. Dropkin, H., Ly, C.: Superresolution for scanning antenna. In: Proceedings of the IEEE International Radar Conference, pp. 306–30. (1997)

  24. Caner, G., Tekalp, A.M., Heinzelman, W.: Performance evaluation of super-resolution reconstruction from video. In: Proceedings of the IS&T/SPIE’s Annual Symposium on Electronic Imaging, pp. 177–185. Santa Clara, CA (2003)

  25. Tanaka, M., Okutomi, M.: Theoretical analysis on reconstruction-based super-resolution for an arbitrary PSF. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 947–954. San Diego, CA (2005)

  26. Rajagopalan A.N., Kiran V.P.: Motion-free superresolution and the role of relative blur. Opt. Soc. Am. J. A Opt. Image Sci. 20, 2022–2032 (2003)

    Article  Google Scholar 

  27. Pham, T.Q., van Vliet, L.J., Schutte, K.: Influence of signal-to-noise ratio and point spread function on limits of superresolution. In: Proceedings of the SPIE Conference on Image Processing: Algorithms and Systems IV, pp. 169–180. San Jose, CA (2005)

  28. Wang Z.-Z., Qi F.-H.: Analysis of multiframe super-resolution reconstruction for image anti-aliasing and deblurring. Image Vis. Comput. 23, 393–404 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eekeren A.W.M., Schutte K., Oudegeest O.R., Vliet L.J.: Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J. Appl. Signal Process. 2007(43953), 1–11 (2007)

    Google Scholar 

  30. Baker S., Kanade T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1167–1183 (2002)

    Article  Google Scholar 

  31. Lin Z., Shum H.-Y.: Fundamental limits of reconstruction-based superresolution algorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell. 26, 83–97 (2004)

    Article  Google Scholar 

  32. Lin, Z.-C., He, J.-F., Tang, X.-O., Tang, C.-K.: Limits of learning-based superresolution algorithms. In: Proceedings of the IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil (2007)

  33. Robinson D., Milanfar P.: Statistical performance analysis of super-resolution. IEEE Trans. Image Process. 15, 1413–1428 (2006)

    Article  Google Scholar 

  34. Chiang M.-C., Boult T.E.: Efficient super-resolution via image warping. Image Vis. Comput. 28, 761–771 (2000)

    Article  Google Scholar 

  35. Patti A., Altunbasak Y.: Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Process. 10, 179–186 (2001)

    Article  Google Scholar 

  36. Lertrattanapanich S., Bose N.K.: High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Trans. Image Process. 11, 1427–1441 (2002)

    Article  MathSciNet  Google Scholar 

  37. Wang Z.-Z., Qi F.-H.: On ambiguities in super-resolution modeling. IEEE Signal Process. Lett. 11, 678–681 (2004)

    Article  Google Scholar 

  38. Nguyen N., Milanfar P.: A wavelet-based interpolation-restoration method for superresolution. Circuits Syst. and Signal Process. 19, 321–338 (2000)

    Article  MATH  Google Scholar 

  39. Ei-Khamy S.E., Hadhoud M.M., Dessouky M.I., Salam B.M., Ei-Samie F.E.: Regularized super-resolution reconstruction of images using wavelet fusion. Opt. Eng. 44, 097001.1–097001.10 (2005)

    Google Scholar 

  40. Ei-Khamy S.E., Hadhoud M.M., Dessouky M.I., Salam B.M., Ei-Samie F.E.: Wavelet fusion: a tool to break the limits on LMMSE image super-resolution. Int. J. Wavel. Multiresolut. Inf. Process. 4, 105–118 (2006)

    Article  Google Scholar 

  41. Ji, H., Fermuller, C.: Wavelet-based super-resolution reconstruction: theory and algorithm. In: Proceedings of the European Conference on Computer Vision, pp. 295–307. Graz, Austria (2006)

  42. Ji H., Fermuller C.: Robust wavelet-based super-resolution reconstruction: theory and algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 31, 649–660 (2009)

    Article  Google Scholar 

  43. Chappalli M.B., Bose N.K.: Simultaneous noise filtering and super-resolution with second-generation wavelets. IEEE Signal Process. Lett. 12, 772–775 (2005)

    Article  Google Scholar 

  44. Ur H., Gross D.: Improved resolution from subpixel shifted pictures. CVGIP Graph. Models Image Process. 54, 181–186 (1992)

    Article  Google Scholar 

  45. Bose N.K., Ahuja N.A.: Superresolution and noise filtering using moving least squares. IEEE Trans. Image Process. 15, 2239–2248 (2006)

    Article  Google Scholar 

  46. Irani M., Peleg S.: Improving resolution by image registration. CVGIP Graph. Models Image Process. 53, 231–239 (1991)

    Article  Google Scholar 

  47. Patti A.J., Tekalp A.M.: Super resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Process. 6, 1446–1451 (1997)

    Article  Google Scholar 

  48. Tom, B.C., Katsaggelos, A.K.: Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 539–542. Washington, DC (1995)

  49. Hardie R.C., Barnard K.J., Armstrong E.E.: Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. Image Process. 6, 1621–1633 (1997)

    Article  Google Scholar 

  50. Tian J., Ma K.-K.: Stochastic super-resolution image reconstruction. J. Vis. Commun. Image Represent. 21, 232–244 (2010)

    Article  Google Scholar 

  51. Tian, J., Ma, K.-K.: Edge-adaptive super-resolution image reconstruction using a Markov chain Monte Carlo approach. In: Proceedings of the International Conference on Information, Communications and Signal Processing. Singapore (2007)

  52. Schultz R.R., Stevenson R.L.: Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 5, 996–1011 (1996)

    Article  Google Scholar 

  53. Kong, D., Han, M., Xu, W., Tao, H., Gong Y.: A conditional random field model for video super-resolution. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 619–622. Hong Kong (2006)

  54. Suresh K.V., Rajagopalan A.N.: Robust and computationally efficient superresolution algorithm. Opt. Soc. Am. J. A Opt. Image Sci. 24, 984–992 (2007)

    Article  Google Scholar 

  55. Belekos S., Galatsanos N.P., Katsaggelos A.K.: Maximum a posteriori video super-resolution using a new multichannel image prior. IEEE Trans. Image Process. 19, 1451–1464 (2010)

    Article  MathSciNet  Google Scholar 

  56. Shen H., Zhang L., Huang B., Li P.: A MAP approach for joint motion estimation, segmentation, and super resolution. IEEE Trans. Image Process. 16, 479–490 (2007)

    Article  MathSciNet  Google Scholar 

  57. Humblot F., Mohammad-Djafari A.: Super-resolution using hidden Markov model and Bayesian detection estimation framework. EURASIP J. Appl. Signal Process. 2006(36971), 1–16 (2006)

    Google Scholar 

  58. Mohammad-Djafari A.: Super-resolution: A short review, a new method based on hidden Markov modeling of hr image and future challenges. Comput. J. 52, 126–141 (2008)

    Article  Google Scholar 

  59. Capel, D., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceedings of the IEEE International Conference on Pattern Recognition, pp. 600–605. Barcelona, Spain (2000)

  60. Chakrabarti A., Rajagopalan A.N., Chellappa R.: Super-resolution of face images using kernel PCA-based prior. IEEE Trans. Multimed. 9, 888–892 (2007)

    Article  Google Scholar 

  61. Kim, K.I., Franz, M., Scholkopf, B.: Kernel hebbian algorithm for single-frame super-resolution. In: Proceedings of the ECCV Workshop on Statistical Learning in Computer Vision, pp. 135–149. Prague, Czech Republic (2004)

  62. Tipping M.E., Bishop C.M.: Bayesian image super-resolution. In: Becker, S., Thrun, S., Obermeyer, K. (eds) Advances in Neural Information Processing Systems, MIT Press, Cambridge (2002)

    Google Scholar 

  63. Pickup L.C., Capel D., Roberts S.J., Zisserman A.: Bayesian image super-resolution, continued. In: Scholkopf, B., Platt, J., Hoffman, T. (eds) Advances in Neural Information Processing Systems, pp. 1089–1096. MIT Press, Cambridge (2006)

    Google Scholar 

  64. He H., Kondi L.P.: Resolution enhancement of video sequences with simultaneous estimation of the regularization parameter. J. Electron. Imaging 13, 586–596 (2004)

    Article  Google Scholar 

  65. Zibetti M., Bazan F., Mayer J.: Determining the regularization parameters for super-resolution problems. Signal Process. 88, 2890–2901 (2008)

    Article  MATH  Google Scholar 

  66. Zibettia M.V.W., Baznb F.S.V., Mayer J.: Estimation of the parameters in regularized simultaneous super-resolution. Pattern Recognit. Lett. 32, 69–78 (2011)

    Article  Google Scholar 

  67. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the SIGGRAPH, pp. 327–340. Los Angeles (2001)

  68. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 275–282. Washington, D.C. (2004)

  69. Freeman W.T., Pasztor E.C., Carmichael O.T.: Learning low-level vision. Int. J. Comput. Vis. 40, 25–47 (2000)

    Article  MATH  Google Scholar 

  70. Pickup L.C., Roberts S.J., Zisserman A.: A sampled texture prior for image super-resolution. In: Thrun, S., Saul, L., Scholkopf, B. (eds) Advances in Neural Information Processing Systems, MIT Press, Cambridge (2003)

    Google Scholar 

  71. Datsenko D., Elad M.: Example-based single document image super-resolution: a global MAP approach with outlier rejection. Multidimens. Syst. Signal Process. 18, 103–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wang J., Zhu S., Gong Y.: Resolution enhancement based on learning the sparse association of image patches. Pattern Recognit. Lett. 31, 1–10 (2010)

    Article  Google Scholar 

  73. Kim K.I., Kwon Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32, 1127–1133 (2010)

    Article  MathSciNet  Google Scholar 

  74. Yang J., Wright J., Huang T., Ma Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19, 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  75. Rhee S., Kang M.G.: Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng. 38, 1348–1356 (1999)

    Article  Google Scholar 

  76. Woods N.A., Galatsanos N.P., Katsaggelos A.K.: Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images. IEEE Trans. Image Process. 15, 201–213 (2006)

    Article  MathSciNet  Google Scholar 

  77. Dempster P., Laird N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  78. Bertero M., Boccacci P.: Introduction to Inverse Problems in Imaging. IOP Publishing Ltd, Philadelphia (1998)

    Book  MATH  Google Scholar 

  79. Li S.Z.: Markov Random Field Modeling in Computer Vision. Springer, New York (1995)

    Google Scholar 

  80. Rue H.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall, Boca Raton (2005)

    Book  MATH  Google Scholar 

  81. Bose, N.K., Lertrattanapanich, S., Koo, J.: Advances in superresolution using L-curve. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 433–436. Sydney, Australia (2001)

  82. Wu C.F.J.: On the convergence properties of the EM algorithm. Ann. Stat. 11, 95–103 (1983)

    Article  MATH  Google Scholar 

  83. Metropolis N., Rosenbluth M.N., Rosenbluth A.W., Teller A.H., Teller E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

    Article  Google Scholar 

  84. Schultz R.R., Li M., Stevenson R.L.: Subpixel motion estimation for super-resolution image sequence enhancement. J. Vis. Commun. Image Represent. 9, 38–50 (1998)

    Article  Google Scholar 

  85. Protter M., Elad M.: Super resolution with probabilistic motion estimation. IEEE Trans. Image Process. 18, 1899–1904 (2009)

    Article  MathSciNet  Google Scholar 

  86. Barreto D., Alvarez L.D., Abad J.: Motion estimation techniques in super-resolution image reconstruction: a performance evaluation. In: Tsvetkov, M., Golev, V., Murtagh, F., Molina, R. (eds) Virtual Observatory. Plate Content Digitalization, Archive Mining and Image Sequence Processing, pp. 254–268. Sofia, Bulgary (2005)

    Google Scholar 

  87. Callico G., Lopez S., Sosa O., Lopez J.F., Sarmiento R.: Analysis of fast block matching motion estimation algorithms for video super-resolution systems. IEEE Trans. Consum. Electron. 54, 1430–1438 (2008)

    Article  Google Scholar 

  88. Baker, S., Kanade, T.: Super resolution optical flow. The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Technical Report, Oct (1999)

  89. Zhao, W., Sawhney, H.: Is super-resolution with optical flow feasible? In: Proceedings of the European Conference on Computer Vision, pp. 599–613. Copenhagen, Denamrk (2002)

  90. Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investigation into optical flow super-resolution for surveillance applications. In: Proceedings of the APRS Workshop on Digital Image Computing, pp. 73–78 (2005)

  91. Le H.V., Seetharaman G.: A super-resolution imaging method based on dense subpixel-accurate motion fields. J. VLSI Signal Process. 42, 79–89 (2006)

    Article  Google Scholar 

  92. Fransens R., Strecha C., Gool L.V.: Optical flow based super-resolution: a probabilistic approach. Comput. Vis. Image Underst. 106, 106–115 (2007)

    Article  Google Scholar 

  93. Suresh K.V., Kumar G.M., Rajagopalan A.N.: Superresolution of license plates in real traffic videos. IEEE Trans. Intell. Trans. Syst. 8, 321–331 (2007)

    Article  Google Scholar 

  94. Narayanan B., Hardie R.C., Barner K.E., Shao M.: A computationally efficient super-resolution algorithm for video processing using partition filters. IEEE Trans. Circuits Syst. Video Technol. 17, 621–634 (2007)

    Article  Google Scholar 

  95. Ng M.K., Shen H.-F., Zhang L.-P., Lam E.: A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP J. Appl. Signal Process. 2007(74585), 1–16 (2007)

    Google Scholar 

  96. Patanavijit V., Jitapunkul S.: A Lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with Lorentzian-Tikhonov regularization. EURASIP J. Appl. Signal Process. 2007(34821), 1–21 (2007)

    Google Scholar 

  97. Borman, S., Stevenson, R.L.: Simultaneous multi-frame MAP super-resolution video enhancement using spatio-temporal priors. In: Proceedings of the IEEE International Conference on Image Processing, pp. 469–473. Kobe, Japan (1999)

  98. Zibetti M., Mayer J.: A robust and computationally efficient simultaneous super-resolution scheme for image sequences. IEEE Trans. Circuits Syst. Video Technol. 17, 1288–1300 (2007)

    Article  Google Scholar 

  99. Alvarez, L.D., Molina, R., Katsaggelos, A.K.: Multi-channel reconstruction of video sequences from low-resolution and compressed observations. In: The 8th Iberoamerican Congress on Pattern Recognition, pp. 46–53. Havana, Cuba (2003)

  100. Elad M., Feuer A.: Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Process. 8, 387–395 (1999)

    Article  Google Scholar 

  101. Elad M., Feuer A.: Super-resolution reconstruction of image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 21, 817–834 (1999)

    Article  Google Scholar 

  102. Farsiu S., Elad M., Milanfar P.: Video-to-video dynamic superresolution for grayscale and color sequences. EURASIP J. Appl. Signal Process. 2006(61859), 1–15 (2006)

    Google Scholar 

  103. Costa G.H., Bermudez J.C.M.: Statistical analysis of the LMS algorithm applied to super-resolution image reconstruction. IEEE Trans. Signal Process. 55, 2084–2095 (2007)

    Article  MathSciNet  Google Scholar 

  104. Tian J., Ma K.-K.: A state-space super-resolution approach for video reconstruction. Signal Image Video Process. 3, 217–240 (2009)

    Article  MATH  Google Scholar 

  105. Bishop, C.M., Blake, A., Marthi, B.: Super-resolution enhancement of video. In: Proceedings of the International Conference on Artificial Intelligence and Statistics. Key West, FL (2003)

  106. Dedeoglu, G., Kanade, T., August, J.: High-zoom video hallucination by exploiting spatio-temporal regularities. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, pp. 151–158. Washington, DC (2004)

  107. Kong, D., Han, M., Xu, W., Tao, H., Gong, Y.: Video superresolution with scene-specific priors. In: Proceedings of the British Machine Vision Association. Edinburgh (2006)

  108. Kimura, K., Nagai, T., Nagayoshi, H., Sako, H.: Simultaneous estimation of super-resolved image and 3D information using multiple stereo-pair images. In: Proceedings of the IEEE International Conference on Image Processing, pp. 417–420. (2007)

  109. Bhavsar, A.V., Rajagopalan, A.N.: Resolution enhancement for binocular stereo. In: Proceedings of the International Conference on Pattern Recognition, pp. 1–4. (2008)

  110. Bhavsar A.V., Rajagopalan A.N.: Resolution enhancement in multi-image stereo. IEEE Trans. Pattern Anal. Mach. Intell. 99, 1721–1728 (2010)

    Article  Google Scholar 

  111. Robertson M.A., Stevenson R.L.: Temporal resolution enhancement in compressed video sequences. EURASIP J. Appl. Signal Process. 2001, 230–238 (2001)

    Article  MATH  Google Scholar 

  112. Shechtman E., Caspi Y., Irani M.: Space-time super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 27, 531–545 (2005)

    Article  Google Scholar 

  113. Watanabe, K., Iwai, Y., Nagahara, H., Yachnida, M., Suzuki, T.: Video synthesis with high spatio-temporal resolution using motion compensation and image fusion in wavelet domain. In: Proceedings of the Asian Conference on Computer Vision, pp. 480–489. Hyderabad, India (2006)

  114. Maor N., Feuer A., Goodwin G.C.: Compression at the source for digital camcorders. EURASIP J. Image Video Process. 2007(41516), 1–11 (2007)

    Google Scholar 

  115. Ishikawa, H., Geiger, D.: Rethinking the prior model for stereo. In: Proceedings of the European Conference on Computer Vision, pp. 526–537. (2006)

  116. Szeliski, R., Veksler, O., Agarwala, A., Rother, C.: A comparative study of energy minimization methods for Markov random fields. In: Proceedings of the European Conference on Computer Vision, pp. 16–29. (2006)

  117. Krishnamurthy R., Woods J., Moulin P.: Frame interpolation and bidirectional prediction of video using compactly encoded optical flow fields and label fields. IEEE Trans. Circuits Syst. Video Technol. 9, 713–726 (1999)

    Article  Google Scholar 

  118. Zhang Y., Zhao D., Ji X., Wang R., Gao W.: A spatio-temporal auto regressive model for frame rate upconversion. IEEE Trans. Circuits Syst. Video Technol. 19, 1289–1301 (2009)

    Article  Google Scholar 

  119. Zhang Y., Zhao D., Ma S., Wang R., Gao W.: A motion-aligned auto-regressive model for frame rate up conversion. IEEE Trans. Image Process. 19, 1248–1258 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Kuang Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, J., Ma, KK. A survey on super-resolution imaging. SIViP 5, 329–342 (2011). https://doi.org/10.1007/s11760-010-0204-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-010-0204-6

Keywords

Navigation