[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Extragradient-type method for optimal control problem with linear constraints and convex objective function

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The paper presents a method for solving optimal control problem with free right end and linear differential equations constraints. The proposed iterative process of extragradient-type is formulated in the functional subspace of piecewise continuous controls of L 2. The convergence of the method is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasiliev, F.P.: Optimization Methods. Factorial Press, Moscow (2002, in Russian)

  2. Karush, W.: Minima of functions of several variables with inequalities as side conditions. Master’s thesis, Department of Mathematics, University of Chicago (1939)

  3. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Neyman, J. (ed.) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. pp. 481–492. University of California Press, Berkeley (1951)

  4. Intriligator M.: Mathematical Optimization and Economic Theory. Prentice-Hall, New York (1971)

    Google Scholar 

  5. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekonomika i Matematicheskie Metody XII(6), 747–756 (1976, in Russian)

  6. Antipin, A.S.: Method of saddle point finding for augmented Lagrangian. Ekonomika i Matematicheskie Metody XIII(3), 560–565 (1977, in Russian)

  7. Antipin, A.S.: Equilibrium programming: methods of gradient type. Avtomatika i telemekhanika (8), 1337–1347 (1997, in Russian)

  8. Antipin, A.S., Khoroshilova, E.V.: Extragradient methods for optimal control problems with linear restrictions. Izvestia IGU Ser. Math. 3, 2–20. http://isu.ru/izvestia/ (2010, in Russian)

  9. Antipin A.S.: Differential gradient prediction-type methods for computing fixed points of extremal mappings. Differ. Equ. 31(11), 1786–1795 (1995)

    MathSciNet  Google Scholar 

  10. Antipin, A.S.: Iterative methods of prediction-type for computing fixed points of extremal mapping. Izvestiya Vysshikh Uchebnykh Zavedeniy. Matematika. 11(402), 17–27 (1995, in Russian)

  11. Ceng L.C., Teboulle M., Yao J.C.: Weak convergence of an iterative method for pseudomonotone variational inequalities and fixed-point problems. J. Optim. Theory Appl. 146(1), 19–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li L., Song W.: A modified extragradient method for inverse-monotone operators in Banach spaces. J. Glob Optim. 44(4), 609–629 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qin X., Cho S.Y., Kang S.M.: An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings. J. Glob. Optim. 49(4), 679–693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Censor Y., Gibali A., Reich S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Glob. Optim. 148(2), 318–335 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Ceng L.-Ch., Hadjisavvas N., Wong N.-C.: Strong convergence theorem by a hybrid extragradient-like approximation method for variational inequalities and fixed point problems. J. Glob. Optim. 46(4), 635–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Petrusel A., Yao J.-C.: An extragradient iterative scheme by viscosity approximation methods for fixed point problems and variational inequality problems. Cent. Eur. J. Math. 7(2), 335–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jaiboon C., Kumam P., Humphries U.W.: An extragradient method for relaxed cocoercive variational inequality and equilibrium problems. Anal. Theory Appl. 25(4), 381–400 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saejung, S., Wongchan, K.: A note on Ceng–Wang–Yao’s result [Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res. (2008) 67: 375–390]. Math. Methods Oper. Res. 73(2), 153–157 (2011)

    Google Scholar 

  19. Yao Y., Noor M.A., Noor K.I., Liou Y.-C., Yaqoob H.: Modified extragradient methods for a system of variational inequalities in Banach spaces. Acta Applicandae Mathematicae 110(3), 1211–1224 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vasilieva, O.V.: Optimal control in terms of smooth and bounded functions. Izvestia IGU Ser. Math. 2(1), 118–131. http://isu.ru/izvestia/ (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena V. Khoroshilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoroshilova, E.V. Extragradient-type method for optimal control problem with linear constraints and convex objective function. Optim Lett 7, 1193–1214 (2013). https://doi.org/10.1007/s11590-012-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-012-0496-2

Keywords

Navigation