[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Rigid versus unique determination of protein structures with geometric buildup

  • Published:
Optimization Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We introduce a geometric buildup approach to the distance geometry problem in protein modeling, and discuss the necessary and sufficient conditions on the distances for rigid or unique determination of a protein structure. We describe a new buildup algorithm for determining protein structures rigidly instead of uniquely. The algorithm requires even fewer distance constraints than the general buildup algorithm. We present the test results from applying the algorithm to determining the protein structures with varying degrees of availability of the distances, and show that the new development increases the modeling ability of the geometric buildup method even more while retaining much of the computational feasibility of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wuthrich K. (1986). NMR of Proteins and Nucleic Acids. Wiley, London

    Google Scholar 

  2. Creighton T.E. (1993). Proteins: Structures and Molecular Properties, 2nd edn. Freeman and Company, San Francisco, USA

    Google Scholar 

  3. Cui F., Jernigan R. and Wu Z. (2005). Refinement of NMR-determined protein structures with database derived distance constraints. J. Bioinform. Comput. Biol. 3: 1315–1329

    Article  Google Scholar 

  4. Wu D., Cui F., Jernigan R. and Wu Z. (2007). PIDD: A database for protein inter-atomic distance distributions. Nucleic Acids Res. 35: D202–D207

    Article  Google Scholar 

  5. Wu, D., Jernigan, R., Wu, Z.: Refinement of NMR-determined protein structures with database derived mean-force potentials, Proteins: Structure, Function, Bioinformatics (2007). doi:10.1002/prot.21358

  6. Crippen G.M. and Havel T.F. (1988). Distance Geometry and Molecular Conformation. Wiley, London

    MATH  Google Scholar 

  7. Hendrickson B.A. (1995). The molecule problem: Exploiting structure in global optimization. SIAM J. Optim. 5: 835–857

    Article  MATH  MathSciNet  Google Scholar 

  8. Havel, T.F.: Distance geometry: Theory, algorithms, and chemical applications, in Encyclopedia of Computational Chemistry, pp. 1–20. Wiley, London (1998)

  9. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

  10. Dong Q. and Wu Z. (2002). A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global Optim. 22: 365–375

    Article  MATH  MathSciNet  Google Scholar 

  11. Dong Q. and Wu Z. (2003). A geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 26: 321–333

    Article  MATH  MathSciNet  Google Scholar 

  12. Wu D. and Wu Z. (2007). An updated geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 37: 661–673

    Article  MATH  MathSciNet  Google Scholar 

  13. Blumenthal L.M. (1953). Theory and Applications of Distance Geometry. Oxford University Press, Oxford

    MATH  Google Scholar 

  14. Sippl M. and Scheraga H. (1985). Solution of the embedding problem and decomposition of symmetric matrices. Proc. Natl. Acad. Sci. USA 82: 2197–2201

    Article  MATH  MathSciNet  Google Scholar 

  15. Sippl M. and Scheraga H. (1986). Cayley–Menger coordinates. Proc. Natl. Acad. Sci. USA 83: 2283–2287

    Article  MATH  MathSciNet  Google Scholar 

  16. Huang H.X., Liang Z.A. and Pardalos P. (2003). Some properties for the Euclidean distance matrix and positive semi-definite matrix completion problems. J. Global Optim. 25: 3–21

    Article  MATH  MathSciNet  Google Scholar 

  17. Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov L.N. and Bourne P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28: 235–242

    Article  Google Scholar 

  18. Wu, D.: Distance-Based Protein Structure Modeling, Ph.D. Thesis, Program on Bioinformatics and Computational Biology and Department of Mathematics, Iowa State University (2006)

  19. Klepeis J.L., Floudas C.A., Morikis D. and Lambris J.D. (1999). Predicting peptide structures using NMR data and deterministic global Optimization. J. Comp. Chem. 20: 1354–1370

    Article  Google Scholar 

  20. Klepeis J.L. and Floudas C.A. (2002). Prediction of beta-sheet topology and disulfide bridges in polypeptides. J. Comp. Chem. 24: 191–208

    Article  Google Scholar 

  21. Floudas C.A., Fung H.K., McAllister S.R., Mönnigmann M. and Rajgaria R. (2006). Advances in protein structure prediction and de novo protein design: a review. Chem. Eng. Sci. 61: 966–988

    Article  Google Scholar 

  22. Vicatos S., Reddy B.V. and Kaznessis Y. (2005). Prediction of distant residue contacts with the use of evolutionary information. Proteins 58: 935–949

    Article  Google Scholar 

  23. Cheng J. and Baldi P. (2007). Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinformatics 8: 113

    Article  Google Scholar 

  24. Sit, A., Wu, Z., Yuan, Y.: A geometric buildup algorithm for the solution of the distance geometry problems using least-squares approximation (2007) (in preparation)

  25. Schlick T. (2003). Molecular Modeling and Simulation: An Interdisciplinary Guide. Springer, Heidelberg

    Google Scholar 

  26. Bourne P.E. and Weissig H. (2003). Structural Bioinformatics. Wiley, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Wu, Z. & Yuan, Y. Rigid versus unique determination of protein structures with geometric buildup. Optimization Letters 2, 319–331 (2008). https://doi.org/10.1007/s11590-007-0060-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-007-0060-7

Keywords

Navigation