Abstract
We present a real-time implementation of 2D to 3D video conversion using compressed video. In our method, compressed 2D video is analyzed by extracting motion vectors. Using the motion vector maps, depth maps are built for each frame and the frames are segmented to provide object-wise depth ordering. These data are then used to synthesize stereo pairs. 3D video synthesized in this fashion can be viewed using any stereoscopic display. In our implementation, anaglyph projection was selected as the 3D visualization method, because it is mostly suited to standard displays.
Similar content being viewed by others
References
Blundell, B., Schwarz, A.: Volumetric Three Dimensional Display Systems. Wiley, New York (2000)
Halle, M.: Autoestereoscopic displays and computer graphics. Comput. Graph. (ACM) 31, 58–62 (1997)
Ideses, I., Yaroslavsky, L.: A method for generating 3D video from a single video stream. VMV 2002 435–438 (2002)
Ideses I., Yaroslavsky L.: 3 methods to improve quality of colour anaglyphs. J. Optics. A: Pure, Applied Optics 7(12), 755–762 (8) (2005)
Ideses, I., Yaroslavsky, L.: New methods to produce high quality color anaglyphs for 3-D visualization. In: Image Analysis and Recognition: International Conference ICIAR 2004, Lecture Notes in Computer Science. pp. 273–280. Springer, Heidelberg (2004)
Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)
Horn, B., Schunck, B.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Periaswamy, S. Farid, H: Elastic registration in the presence of intensity variations. IEEE. Trans. Med. Imaging. 22(7) (2003)
Wu, Y.T., Kanade, T., Li, C.C., Cohn, J.: Image registration using wavelet-based motion model. Int. J. Comput. Vis. (2000)
Alvarez, L., Deriche, R., Sanchez, J., Weickert, J.: Dense disparity map estimation respecting image discontinuities: a PDE and scalespace based approach. Technical Report RR-3874, INRIA (2000)
Schmidt, J., Niemann, H., Vogt, S.: Dense disparity maps in real-time with an application to augmented reality. In: IEEE Workshop on Applications of Computer Vision (WACV 2002), 3–4 December 2002. IEEE Computer Society, Orlando
Ran, A., Sochen, N.A.: Differential Geometry Techniques in Stereo Vision Proceedings of EWCG, pp. 98–103 (2000)
Corke, P., Dunn, P.: Real-Time Stereopsis Using FPGAs, IEEE TENCON—Speech and Image Technologies for Computing and Telecommunications, pp. 235–238 (1997)
Faugeras, O. et al.: Real time correlation based stereo: algorithm, implementations and applications. INRIA Technical Report 2013 (1993)
Kimura, S., Kanade, T., Kano, H., Yoshida, A., Kawamura, E., Oda, K.: CMU video-rate stereo machine. Proceedings of Mobile Mapping Symposium (1995)
Konolige, K.: Small vision systems: hardware and implementation. In: Eighth International Symposium on Robotics Research, Hayama, Japan (1997)
Kimura, S., Shinbo, T., Yamaguchi, H., Kawamura, E., Naka, K.: A convolver-based real-time stereo machine (SAZAN). CVPR, pp. 457–463 (1999)
Matthies, L.: Stereo vision for planetary rovers: stochastic modeling to near realtime implementation. Int. J. Comput. Vis. 8, 71–91 (1992)
Mulligan, J., Daniilidis, K.: Real-time trinocular stereo for tele-immersion. ICIP (2001)
Woodfill, J., Von Herzen, B.: Real-time stereo vision on the PARTS reconfigurable computer. In: Proceedings of IEEE Workshop FPGAs for Custom Computing Machines, pp. 242–250 (1997)
Ideses, I.P., Yaroslavsky, L.P., Vistuch, R., Fishbain, B.: 3D video from compressed 2D video. In: Proceedings of Stereoscopic Displays and Applications XVIII. SPIE and IS&T, San Jose, CA (2007)
Ohm, J.R.: Stereo/multiview video encoding using the MPEG family of standards. In: Merritt, O.J., Bolas, M.T., Fisher,S.S., (eds.) The Engineering Reality of Virtual Reality, vol. 3639, pp. 242–253. SPIE, San Jose (1999)
Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE. Trans. Circ. Syst. Video Technol. 13(7), 560–576 (2003)
Yaroslavsky, L.P., Campos, J., Espínola, M., Ideses, I.: Redundancy of stereoscopic images: experimental evaluation. Opt. Express. 13, 10895–10907 (2005)
Yaroslavsky, L.P.: On redundancy of stereoscopic pictures. In: Proceedings of Image Science ‘85, Helsinki, Finland, 11–14 June 1985, vol. 1, pp. 82–85. Acta Polytechnica Scandinavica, no. 149 (1985)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ideses, I., Yaroslavsky, L.P. & Fishbain, B. Real-time 2D to 3D video conversion. J Real-Time Image Proc 2, 3–9 (2007). https://doi.org/10.1007/s11554-007-0038-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-007-0038-9