[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A refined invariant subspace method and applications to evolution equations

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The invariant subspace method is refined to present more unity and more diversity of exact solutions to evolution equations. The key idea is to take subspaces of solutions to linear ordinary differential equations as invariant subspaces that evolution equations admit. A two-component nonlinear system of dissipative equations is analyzed to shed light on the resulting theory, and two concrete examples are given to find invariant subspaces associated with 2nd-order and 3rd-order linear ordinary differential equations and their corresponding exact solutions with generalized separated variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bluman G W, Kumei S. Symmetries and Differential Equations. New York: Springer-Verlag, 1989

    MATH  Google Scholar 

  2. Debnath L. Nonlinear Partial Differential Equations for Scientists and Engineers, 2nd Ed. Boston: Birkhäuser, 2004

    Google Scholar 

  3. Fokas A S, Liu Q M. Nonlinear interaction of travelling waves of nonintegrable equations. Phys Rev Lett, 1994, 72: 3293–3296

    Article  MathSciNet  MATH  Google Scholar 

  4. Galaktionov V A. Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities. Proc Roy Soc Endin Sect A, 1995, 125: 225–246

    Article  MathSciNet  MATH  Google Scholar 

  5. Galaktionov V A, Svirshchevskii S R. Exact Solutions and Invarinat Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. London: Chapman and Hall/CRC, 2007

    Google Scholar 

  6. Hirota R. The Direct Method in Soliton Theory. New York: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  7. Hirota R, Grammaticos B, Ramani A. Soliton structure of the Drinfel’d-Sokolov-Wilson equation. J Math Phys, 1986, 27: 1499–1505

    Article  MathSciNet  MATH  Google Scholar 

  8. King J R. Exact polynomial solutions to some nonlinear diffusion equations. Physica D, 1993, 64: 35–65

    Article  MathSciNet  MATH  Google Scholar 

  9. Li C X, Ma W X, Liu X J, et al. Wronskian solutions of the Boussinesq equation-solitons, negatons, positons and complexitons. Inverse Problems, 2007, 23: 279–296

    Article  MathSciNet  MATH  Google Scholar 

  10. Ma W X. Complexiton solutions to the Korteweg-de Vries equation. Phys Lett A, 2002, 301: 35–44

    Article  MathSciNet  MATH  Google Scholar 

  11. Ma W X. Integrability. In: Scott A, ed. Encyclopedia of Nonlinear Science. New York: Taylor & Francis, 2005, 250–253

    Google Scholar 

  12. Ma W X. Complexiton solutions to integrable equations. Nonlinear Anal, 2005, 63: e2461–e2471

    Article  MATH  Google Scholar 

  13. Ma W X. Wronskian solutions to integrable equations. Discrete Contin Dynam Syst, 2009, Supp: 506–515

  14. Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation. Appl Math Comput, 2011, 217: 10016–10023

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma W X, Fan E G. Linear superposition principle applying to Hirota bilinear equations. Comput Math Appl, 2011, 61: 950–959

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma WX, Huang TW, Zhang Y. A multiple exp-function method for nonlinear differential equations and its application. Phys Scr, 2010, 82: 065003

    Article  Google Scholar 

  17. Ma W X, Li C X, He J S. A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal, 2009, 70: 4245–4258

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma W X, You Y. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Trans Amer Math Soc, 2005, 357: 1753–1778

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma W X, Zhang Y, Tang Y N, et al. Hirota bilinear equations with linear subspaces of solutions. Appl Math Comput, 2012, 218: 7174–7183

    Article  MathSciNet  MATH  Google Scholar 

  20. Olver P J. Applications of Lie Groups to Differential Equations, 2nd Ed. New York: Springer-Verlag, 1993

    Book  MATH  Google Scholar 

  21. Qu C Z. Group classification and generalized conditional symmetry reduction of the nonlinear diffusion-convection equation with a nonlinear source. Stud Appl Math, 1997, 99: 107–136

    Article  MathSciNet  MATH  Google Scholar 

  22. Qu C Z, Ji J N, Wang L Z. Conditional Lie-Bäcklund symmetries and sign-invarints to quasi-linear diffusion equations. Stud Appl Math, 2007, 119: 355–391

    Article  MathSciNet  Google Scholar 

  23. Qu C Z, Zhu C R. Classification of coupled systems with two-component nonlinear diffusion equations by the invrainat subspace method. J Phys A Math Theor, 2009, 42: 475201

    Article  MathSciNet  Google Scholar 

  24. Shen S F, Qu C Z, Jin Y Y, et al. Maximal dimension of invariant subspaces to systems of nonlinear evolution equations. Chin Ann Math B, 2012, 33: 161–178

    Article  MathSciNet  Google Scholar 

  25. Svirshchevskii S R. Lie-Bäcklund symmetries of linear ODEs and generalised separation of variables in nonlinear equations. Phys Lett A, 1995, 199: 344–348

    Article  MathSciNet  MATH  Google Scholar 

  26. Svirshchevskii S R. Ordinary differential operators possessing invaraint subspaces of polynomial type. Commun Nonlinear Sci Numer Simul, 2004, 9: 105–115

    Article  MathSciNet  MATH  Google Scholar 

  27. Titov S S. A method of finite-diemnsional rings for solving nonlinear equations of mathematical physics. In: Ivanova T P, ed. Aerodynamics. Saratov: Saratov University, 1988, 104–109

    Google Scholar 

  28. Zhdanov R Z. Conditional Lie-Bäcklund symmetry and reductions of evolution equations. J Phys A Math Gen, 1995, 28: 3841–3850

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu C R, Qu C Z. Maximal dimension of invariant subspaces admitted by nonlinear vector differential operators. J Math Phys, 2011, 52: 043507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xiu Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, WX. A refined invariant subspace method and applications to evolution equations. Sci. China Math. 55, 1769–1778 (2012). https://doi.org/10.1007/s11425-012-4408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4408-9

Keywords

MSC(2010)

Navigation