[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Random Projections of Smooth Manifolds

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose a new approach for nonadaptive dimensionality reduction of manifold-modeled data, demonstrating that a small number of random linear projections can preserve key information about a manifold-modeled signal. We center our analysis on the effect of a random linear projection operator Φ:ℝN→ℝM, M<N, on a smooth well-conditioned K-dimensional submanifold ℳ⊂ℝN. As our main theoretical contribution, we establish a sufficient number M of random projections to guarantee that, with high probability, all pairwise Euclidean and geodesic distances between points on ℳ are well preserved under the mapping Φ.

Our results bear strong resemblance to the emerging theory of Compressed Sensing (CS), in which sparse signals can be recovered from small numbers of random linear measurements. As in CS, the random measurements we propose can be used to recover the original data in ℝN. Moreover, like the fundamental bound in CS, our requisite M is linear in the “information level” K and logarithmic in the ambient dimension N; we also identify a logarithmic dependence on the volume and conditioning of the manifold. In addition to recovering faithful approximations to manifold-modeled signals, however, the random projections we propose can also be used to discern key properties about the manifold. We discuss connections and contrasts with existing techniques in manifold learning, a setting where dimensionality reducing mappings are typically nonlinear and constructed adaptively from a set of sampled training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Achlioptas, Database-friendly random projections, in Proc. Symp. on Principles of Database Systems (PODS ’01), pp. 274–281, ACM Press, New York, 2001.

    Google Scholar 

  2. R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, A simple proof of the restricted isometry property for random matrices. Constr. Approx. (2008), to appear.

  3. D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk, Distributed compressed sensing, Preprint, 2005.

  4. M. Belkin and P. Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput. 15(6) (2003), 1373–1396.

    Article  MATH  Google Scholar 

  5. M. Brand, Charting a manifold, in Advances in Neural Information Processing Systems (NIPS), Vol. 15, pp. 985–992, MIT Press, Cambridge, 2003.

    Google Scholar 

  6. D. S. Broomhead and M. Kirby, A new approach for dimensionality reduction: Theory and algorithms, SIAM J. Appl. Math. 60(6) (2000), 2114–2142.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. S. Broomhead and M. J. Kirby, The Whitney reduction network: A method for computing autoassociative graphs, Neural Comput. 13(11) (2001), 2595–2616.

    Article  MATH  Google Scholar 

  8. E. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52(2) (2006), 489–509.

    Article  Google Scholar 

  9. E. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math. 59(8) (2006), 1207–1223.

    Article  MATH  Google Scholar 

  10. E. Candès and T. Tao, Decoding via linear programming, IEEE Trans. Inf. Theory 51(12) (2005), 4203–4215.

    Article  Google Scholar 

  11. E. Candès and T. Tao, The Dantzig selector: Statistical estimation when p is much larger than n, Ann. Stat. (2007), to appear. arXiv: math.ST/0506081.

  12. E. Candès and T. Tao, Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inf. Theory 52(12) (2006), 5406–5425.

    Article  Google Scholar 

  13. G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, Persistence bar codes for shapes, in Proc. Symp. on Geometry processing (SGP ’04), pp. 124–135, ACM Press, New York, 2004.

    Google Scholar 

  14. R. R. Coifman and M. Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21(1) (2006), 53–94.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. A. Costa and A. O. Hero, Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Trans. Signal Process. 52(8) (2004), 2210–2221.

    Article  MathSciNet  Google Scholar 

  16. S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss, Random Struct. Algorithms 22(1) (2003), 60–65.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Donoho, Neighborly polytopes and sparse solution of underdetermined linear equations, Technical Report 2005-04, Department of Statistics, Stanford University, 2005.

  18. D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52(4) (2006).

  19. D. Donoho, For most large underdetermined systems of linear equations, the minimal L1-norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59(6) (2006).

  20. D. Donoho, High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. 35(4) (2006), 617–652.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Donoho and J. Tanner, Neighborliness of randomly-projected simplices in high dimensions, Proc. Natl. Acad. Sci. USA 102(27) (2005), 9452–9457.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Donoho and Y. Tsaig, Extensions of compressed sensing, Signal Process. 86(3) (2006), 533–548.

    Article  MATH  Google Scholar 

  23. D. L. Donoho and C. Grimes, Image manifolds which are isometric to Euclidean space, J. Math. Imaging Comput. Vis. 23(1) (2005), 5–24.

    Article  MathSciNet  Google Scholar 

  24. D. L. Donoho and C. E. Grimes, Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data, Proc. Natl. Acad. Sci. USA 100(10) (2003), 5591–5596.

    Article  MATH  MathSciNet  Google Scholar 

  25. D. L. Donoho and J. Tanner, Counting faces of randomly-projected polytopes when then projection radically lowers dimension, Technical Report 2006-11, Department of Statistics, Stanford University, 2006. arXiv: math.MG/0607364.

  26. C. Grimes, New Methods in Nonlinear Dimensionality Reduction, Ph.D. thesis, Department of Statistics, Stanford University, 2003.

  27. J. Haupt and R. Nowak, Signal reconstruction from noisy random projections, IEEE Trans. Inf. Theory 52(9) (2006), 4036–4048.

    Article  MathSciNet  Google Scholar 

  28. G. E. Hinton, P. Dayan, and M. Revow, Modeling the manifolds of images of handwritten digits, IEEE Trans. Neural Netw. 8(1) (1997), 65–74.

    Article  Google Scholar 

  29. M. W. Hirsch, Differential Topology, Graduate Texts in Mathematics, Vol. 33, Springer, New York, 1976.

    MATH  Google Scholar 

  30. P. Indyk and A. Naor, Nearest-neighbor-preserving embeddings, ACM Trans. Algorithms 3(3) (2007).

  31. S. Kirolos, J. Laska, M. Wakin, M. Duarte, D. Baron, T. Ragheb, Y. Massoud, and R. Baraniuk, Analog-to-information conversion via random demodulation, Proc. IEEE Dallas Circuits and Systems Workshop (DCAS), Dallas, TX, October 2006.

  32. G. G. Lorentz, M. von Golitschek, and Y. Makovoz, Constructive Approximation: Advanced Problems, Grundlehren der Mathematischen Wissenschaften, Vol. 304, Springer, Berlin, 1996.

    MATH  Google Scholar 

  33. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  34. P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds with confidence from random samples, Discrete Comput. Geom. (2006). doi:10.1007/s00454-006-1250-7.

    MATH  Google Scholar 

  35. A. Pinkus, n-Widths and Optimal Recovery, in Proceedings of Symposia in Applied Mathematics, Vol. 36, pp. 51–66, American Mathematical Society, Providence, 1986.

    Google Scholar 

  36. I. Ur Rahman, I. Drori, V. C. Stodden, D. L. Donoho, and P. Schroeder, Multiscale representations for manifold-valued data, SIAM J. Multiscale Model. Simul. 4(4) (2005), 1201–1232.

    Article  MATH  Google Scholar 

  37. S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500) (2000), 2323–2326.

    Article  Google Scholar 

  38. M. Rudelson and R. Vershynin, Geometric approach to error correcting codes and reconstruction of signals, Int. Math. Res. Not. 64 (2005), 4019–4041.

    Article  MathSciNet  Google Scholar 

  39. D. Takhar, V. Bansal, M. Wakin, M. Duarte, D. Baron, K. F. Kelly, and R. G. Baraniuk, A compressed sensing camera: New theory and an implementation using digital micromirrors, Proc. Comp. Imaging IV at SPIE Electronic Imaging, San Jose, CA, January 2006.

  40. D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression Fundamentals, Standards and Practice, Kluwer Academic, Dordrecht, 2001.

    Google Scholar 

  41. J. B. Tenenbaum, V. de Silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science 290(5500) (2000), 2319–2323.

    Article  Google Scholar 

  42. J. A. Tropp, M. B. Wakin, M. F. Duarte, D. Baron, and R. G. Baraniuk, Random filters for compressive sampling and reconstruction, in Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), IEEE, New York, 2006.

    Google Scholar 

  43. M. Turk and A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci. 3(1) (1991), 71–83.

    Article  Google Scholar 

  44. M. B. Wakin, The Geometry of Low-Dimensional Signal Models, Ph.D. thesis, Department of Electrical and Computer Engineering, Rice University, Houston, TX, 2006.

  45. M. B. Wakin and R. G. Baraniuk, Random projections of signal manifolds, in Proc. Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), IEEE, New York, 2006.

    Google Scholar 

  46. M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk, The multiscale structure of non-differentiable image manifolds, in Proc. Wavelets XI at SPIE Optics and Photonics, San Diego, CA, August 2005.

  47. K. Q. Weinberger and L. K. Saul, Unsupervised learning of image manifolds by semidefinite programming, Int. J. Comput. Vis. 70(1) (2006), 77–90. Special issue: Comput. Vis. Pattern Recognit. (CVPR 2004).

    Article  Google Scholar 

  48. Z. Zhang and H. Zha, Principal manifolds and nonlinear dimension reduction via tangent space alignment, SIAM J. Sci. Comput. 26(1) (2005), 313–338.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Wakin.

Additional information

Communicated by Emmanuel Candès.

This research was supported by ONR grants N00014-06-1-0769 and N00014-06-1-0829; AFOSR grant FA9550-04-0148; DARPA grants N66001-06-1-2011 and N00014-06-1-0610; NSF grants CCF-0431150, CNS-0435425, CNS-0520280, and DMS-0603606; and the Texas Instruments Leadership University Program. Web: dsp.rice.edu/cs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baraniuk, R.G., Wakin, M.B. Random Projections of Smooth Manifolds. Found Comput Math 9, 51–77 (2009). https://doi.org/10.1007/s10208-007-9011-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-007-9011-z

Keywords

Mathematics Subject Classification (2000)

Navigation