[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A warm-start approach for large-scale stochastic linear programs

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We describe a way of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree and use the solution to generate an advanced starting point for the complete problem. The way we produce a reduced tree tries to capture the important information in the scenario space while keeping the dimension of the corresponding (reduced) deterministic equivalent small. We derive conditions which should be satisfied by the reduced tree to guarantee a successful warm-start of the complete problem. The implementation within the HOPDM and OOPS interior point solvers shows remarkable advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benson H.Y., Shanno D.F.: An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming. Comput. Optim. Appl. 38, 371–399 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birge J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33, 989–1007 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birge J.R., Dempster M.A.H., Gassmann H.I., Gunn E.A., King A.J., Wallace S.W.: A standard input format for multiperiod stochastic linear programs. Comm. Algorithm. Newsl. 17, 1–19 (1987)

    Google Scholar 

  4. Birge J.R., Louveaux F.: Introduction to Stochastic Programming. Springer Series in Operations Research, New York (1997)

    MATH  Google Scholar 

  5. Bixby R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50, 3–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colombo M., Gondzio J.: Further development of multiple centrality correctors. Comput. Optim. Appl. 41, 277–305 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dupačová J., Gröwe-Kuska N., Römisch W.: Scenario reduction in stochastic programming. Math. Program. 95, 493–511 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gondzio J.: Multiple centrality corrections in a primal-dual method for linear programming. Comput. Optim. Appl. 6, 137–156 (2003)

    MathSciNet  Google Scholar 

  9. Gondzio J.: Warm start of the primal-dual method applied in the cutting-plane scheme. Math. Program. 83, 125–143 (1998)

    MathSciNet  MATH  Google Scholar 

  10. Gondzio V., Grothey A.: Reoptimization with the primal-dual interior point method. SIAM. J. Optim. 13, 842–864 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gondzio, J., Grothey, A.: A new unblocking technique to warmstart interior point methods based on sensitivity analysis. Technical Report MS-06-005, School of Mathematics, The University of Edinburgh, December 2006. Accepted for publication in SIAM Journal on Optimization

  12. Gondzio J., Grothey A.: Solving non-linear portfolio optimization problems with the primal-dual interior point method. Eur. J. Oper. Res. 181, 1012–1029 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gondzio J., Sarkissian R.: Parallel interior-point solver for structured linear programs. Math. Program. 96, 561–584 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gondzio J., Vial J.-P.: Warm start and ɛ-subgradients in a cutting plane scheme for block-angular linear programs. Comput. Optim. Appl. 14, 17–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hipolito A.L.: A weighted least squares study of robustness in interior point linear programming. Comput. Optim. Appl. 2, 29–46 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Høyland K., Kaut M., Wallace S.W.: A heuristic for moment-matching scenario generation. Comput. Optim. Appl. 24, 169–185 (2003)

    Article  MathSciNet  Google Scholar 

  17. John E., Yıldırım E.A.: Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimensions. Comput. Optim. Appl. 41, 151–183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kall P., Wallace S.W.: Stochastic Programming. Wiley, New York (1994)

    MATH  Google Scholar 

  19. Linderoth J., Wright S.J.: Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim. Appl. 24, 207–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mehrotra S.: On the implementation of a primal-dual interior point method. SIAM. J. Optim. 2, 575–601 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mitchell J.E.: Karmakar’s algorithm and combinatorial optimization problems. PhD thesis, Cornell University (1988)

  22. Mitchell J.E., Todd M.J.: Solving combinatorial optimization problems using Karmarkar’s algorithm. Math. Program. 56, 245–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mulvey J.M., Ruszczyński A.: A new scenario decomposition method for large-scale stochastic optimization. Oper. Res. 43, 477–490 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ouorou A.: Robust capacity assignment in telecommunications. Comput. Manag. Sci. 3, 285–305 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pflug G.C.: Scenario tree generation for multiperiod financial optimization by optimal discretization. Math. Program. 89, 251–271 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wright S.J.: Primal-dual Interior-point Methods. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  27. Yıldırım E.A., Wright S.J.: Warm-start strategies in interior-point methods for linear programming. SIAM J. Optim. 12, 782–810 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Colombo.

Additional information

This research has been supported by France Télécom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, M., Gondzio, J. & Grothey, A. A warm-start approach for large-scale stochastic linear programs. Math. Program. 127, 371–397 (2011). https://doi.org/10.1007/s10107-009-0290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0290-9

Mathematics Subject Classification (2000)

Navigation