Abstract
The host components and commensal microorganisms of the intestinal microenvironment play roles in the development and maintenance of the host defence. Recent observations have suggested that toll-like receptors (TLRs) are involved in the recognition of innate immunity against intestinal microbes. However, little is known regarding the role of TLR in the maintenance of systemic host defence by intestinal microorganisms. We studied the expression and function of TLR4 and TLR2 on alveolar and peritoneal macrophages in mice after 3 weeks of oral administration of streptomycin and cefotaxime. After active treatment, the intestinal microorganisms were nearly completely eradicated, and the surface expression of TLR4 and TLR2 on the peritoneal macrophages was prominently downregulated. When the actively treated mice were challenged with lipopolysaccharide (LPS), a TLR4 ligand, the host response was markedly impaired. Our results suggest that the oral administration of antimicrobials downregulates the expression of surface TLR on the peritoneal macrophages and modulates the host immune responses against LPS by modifying the intestinal environment.
Similar content being viewed by others
References
Tlaskalova-Hogenova H, Tuckova L, Mestecky J, Kolinska J, Rossmann P, Stepankova R, Kozakova H, Hudcovic T, Hrncir T, Frolova L, Kverka M (2005) Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 62(Suppl 1):106–113
Kelly D, King T, Aminov R (2007) Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 622:58–69
Pospísil R, Trebichavsky I, Sinkora J, Lipoldová M, Mandel L, Tucková L, Rejnek J (1995) Expression of Thy-1 antigen in germ-free and conventional piglets. Adv Exp Med Biol 371A:453–457
Bos NA, Ploplis VA (1994) Humoral immune response to 2,4-dinitrophenyl—keyhole limpet hemocyanin in antigen-free, germ-free and conventional BALB/c mice. Eur J Immunol 24:59–65
Asahara T, Nomoto K, Shimizu K, Watanuki M, Tanaka R (2001) Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 91:985–996
Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247
Barza M, Giuliano M, Jacobus NV, Gorbach SL (1987) Effect of broad-spectrum parenteral antibiotics on “colonization resistance” of intestinal microflora of humans. Antimicrob Agents Chemother 31:723–727
Huang T, Wei B, Velazquez P, Borneman J, Braun J (2005) Commensal microbiota alter the abundance and TCR responsiveness of splenic naïve CD4+ T lymphocytes. Clin Immunol 117:221–230
Corthésy B, Gaskins HR, Mercenier A (2007) Cross-talk between probiotic bacteria and the host immune system. J Nutr 137:781S–790S
Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051S
Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568
Wickens K, Pearce N, Crane J, Beasley R (1999) Antibiotic use in early childhood and the development of asthma. Clin Exp Allergy 29:766–771
Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107:129–134
Kirjavainen PV, Apostolou E, Arvola T, Salminen SJ, Gibson GR, Isolauri E (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 32:1–7
Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193:323–330
Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801
Netea MG, Van der Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ (2005) From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 49:3991–3996
Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241
Kikuchi H, Yajima T (1992) Correlation between water-holding capacity of different types of cellulose in vitro and gastrointestinal retention time in vivo of rats. J Sci Food Agric 60:139–146
Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, Saitoh T, Yamaoka S, Yamamoto N, Yamamoto S, Muta T, Takeda K, Akira S (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430:218–222
Hirotani T, Lee PY, Kuwata H, Yamamoto M, Matsumoto M, Kawase I, Akira S, Takeda K (2005) The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J Immunol 174:3650–3657
Sharma RJ, Macallan DC, Sedgwick P, Remick DG, Griffin GE (1992) Kinetics of endotoxin-induced acute-phase protein gene expression and its modulation by TNF-alpha monoclonal antibody. Am J Physiol 262:R786–R793
Swerdlow MP, Kennedy DR, Kennedy JS, Washabau RJ, Henthorn PS, Moore PF, Carding SR, Felsburg PJ (2006) Expression and function of TLR2, TLR4, and Nod2 in primary canine colonic epithelial cells. Vet Immunol Immunopathol 114:313–319
Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, Wahl LM, Fenton MJ, Vogel SN (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 282:16042–16053
Anand RJ, Kohler JW, Cavallo JA, Li J, Dubowski T, Hackam DJ (2007) Toll-like receptor 4 plays a role in macrophage phagocytosis during peritoneal sepsis. J Pediatr Surg 42:927–932, discussion 933
Simitsopoulou M, Roilides E, Paliogianni F, Likartsis C, Ioannidis J, Kanellou K, Walsh TJ (2008) Immunomodulatory effects of voriconazole on monocytes challenged with Aspergillus fumigatus: differential role of Toll-like receptors. Antimicrob Agents Chemother 52:3301–3306
Ziegeler S, Raddatz A, Hoff G, Buchinger H, Bauer I, Stockhausen A, Sasse H, Sandmann I, Hörsch S, Rensing H (2006) Antibiotics modulate the stimulated cytokine response to endotoxin in a human ex vivo, in vitro model. Acta Anaesthesiol Scand 50:1103–1110
Yasutomi M, Ohshima Y, Omata N, Yamada A, Iwasaki H, Urasaki Y, Mayumi M (2005) Erythromycin differentially inhibits lipopolysaccharide- or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells. J Immunol 175:8069–8076
Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164:3471–3475
Saitoh S, Miyake K (2006) Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem Rec 6:311–319
Fujimoto T, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T (2004) The amino-terminal region of toll-like receptor 4 is essential for binding to MD-2 and receptor translocation to the cell surface. J Biol Chem 279:47431–47437
Wakabayashi Y, Kobayashi M, Akashi-Takamura S, Tanimura N, Konno K, Takahashi K, Ishii T, Mizutani T, Iba H, Kouro T, Takaki S, Takatsu K, Oda Y, Ishihama Y, Saitoh S, Miyake K (2006) A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol 177:1772–1779
Saitoh SI (2009) Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology [Epub ahead of print]
Yanagimoto S, Tatsuno K, Okugawa S, Kitazawa T, Tsukada K, Koike K, Kodama T, Kimura S, Shibasaki Y, Ota Y (2009) A single amino acid of toll-like receptor 4 that is pivotal for its signal transduction and subcellular localization. J Biol Chem 284:3513–3520
Visintin A, Halmen KA, Khan N, Monks BG, Golenbock DT, Lien E (2006) MD-2 expression is not required for cell surface targeting of Toll-like receptor 4 (TLR4). J Leukoc Biol 80:1584–1592
Begon E, Michel L, Flageul B, Beaudoin I, Jean-Louis F, Bachelez H, Dubertret L, Musette P (2007) Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 17:497–506
Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004
Mita Y, Dobashi K, Shimizu Y, Nakazawa T, Mori M (2001) Toll-like receptor 2 and 4 surface expressions on human monocytes are modulated by interferon-gamma and macrophage colony-stimulating factor. Immunol Lett 78:97–101
Mita Y, Dobashi K, Endou K, Kawata T, Shimizu Y, Nakazawa T, Mori M (2002) Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Lett 81:71–75
Shimura H, Nitahara A, Ito A, Tomiyama K, Ito M, Kawai K (2005) Up-regulation of cell surface Toll-like receptor 4-MD2 expression on dendritic epidermal T cells after the emigration from epidermis during cutaneous inflammation. J Dermatol Sci 37:101–110
Frleta D, Noelle RJ, Wade WF (2003) CD40-mediated up-regulation of Toll-like receptor 4-MD2 complex on the surface of murine dendritic cells. J Leukocyte Biol 74:1064–1073
Nicaise P, Gleizes A, Sandre C, Forestier F, Kergot R, Quero AM, Labarre C (1998) Influence of intestinal microflora on murine bone marrow and spleen macrophage precursors. Scand J Immunol 48:585–591
Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807
Acknowledgement
This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (#18591988 for NS) and was not commercially supported. The authors thank Rodolphe Ruffy, MD, for reviewing the style and language of this manuscript.
Disclosure
No author has a potential conflict of interest to disclose.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Umenai, T., Hirai, H., Shime, N. et al. Eradication of the commensal intestinal microflora by oral antimicrobials interferes with the host response to lipopolysaccharide. Eur J Clin Microbiol Infect Dis 29, 633–641 (2010). https://doi.org/10.1007/s10096-010-0905-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10096-010-0905-3