[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Eradication of the commensal intestinal microflora by oral antimicrobials interferes with the host response to lipopolysaccharide

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The host components and commensal microorganisms of the intestinal microenvironment play roles in the development and maintenance of the host defence. Recent observations have suggested that toll-like receptors (TLRs) are involved in the recognition of innate immunity against intestinal microbes. However, little is known regarding the role of TLR in the maintenance of systemic host defence by intestinal microorganisms. We studied the expression and function of TLR4 and TLR2 on alveolar and peritoneal macrophages in mice after 3 weeks of oral administration of streptomycin and cefotaxime. After active treatment, the intestinal microorganisms were nearly completely eradicated, and the surface expression of TLR4 and TLR2 on the peritoneal macrophages was prominently downregulated. When the actively treated mice were challenged with lipopolysaccharide (LPS), a TLR4 ligand, the host response was markedly impaired. Our results suggest that the oral administration of antimicrobials downregulates the expression of surface TLR on the peritoneal macrophages and modulates the host immune responses against LPS by modifying the intestinal environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a, b
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tlaskalova-Hogenova H, Tuckova L, Mestecky J, Kolinska J, Rossmann P, Stepankova R, Kozakova H, Hudcovic T, Hrncir T, Frolova L, Kverka M (2005) Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 62(Suppl 1):106–113

    Article  CAS  PubMed  Google Scholar 

  2. Kelly D, King T, Aminov R (2007) Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 622:58–69

    CAS  PubMed  Google Scholar 

  3. Pospísil R, Trebichavsky I, Sinkora J, Lipoldová M, Mandel L, Tucková L, Rejnek J (1995) Expression of Thy-1 antigen in germ-free and conventional piglets. Adv Exp Med Biol 371A:453–457

    PubMed  Google Scholar 

  4. Bos NA, Ploplis VA (1994) Humoral immune response to 2,4-dinitrophenyl—keyhole limpet hemocyanin in antigen-free, germ-free and conventional BALB/c mice. Eur J Immunol 24:59–65

    Article  CAS  PubMed  Google Scholar 

  5. Asahara T, Nomoto K, Shimizu K, Watanuki M, Tanaka R (2001) Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 91:985–996

    Article  CAS  PubMed  Google Scholar 

  6. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247

    Article  CAS  PubMed  Google Scholar 

  7. Barza M, Giuliano M, Jacobus NV, Gorbach SL (1987) Effect of broad-spectrum parenteral antibiotics on “colonization resistance” of intestinal microflora of humans. Antimicrob Agents Chemother 31:723–727

    CAS  PubMed  Google Scholar 

  8. Huang T, Wei B, Velazquez P, Borneman J, Braun J (2005) Commensal microbiota alter the abundance and TCR responsiveness of splenic naïve CD4+ T lymphocytes. Clin Immunol 117:221–230

    Article  CAS  PubMed  Google Scholar 

  9. Corthésy B, Gaskins HR, Mercenier A (2007) Cross-talk between probiotic bacteria and the host immune system. J Nutr 137:781S–790S

    PubMed  Google Scholar 

  10. Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051S

    CAS  PubMed  Google Scholar 

  11. Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568

    Article  CAS  PubMed  Google Scholar 

  12. Wickens K, Pearce N, Crane J, Beasley R (1999) Antibiotic use in early childhood and the development of asthma. Clin Exp Allergy 29:766–771

    Article  CAS  PubMed  Google Scholar 

  13. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107:129–134

    Article  PubMed  Google Scholar 

  14. Kirjavainen PV, Apostolou E, Arvola T, Salminen SJ, Gibson GR, Isolauri E (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 32:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193:323–330

    Article  CAS  PubMed  Google Scholar 

  16. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  17. Netea MG, Van der Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ (2005) From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 49:3991–3996

    Article  CAS  PubMed  Google Scholar 

  18. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    Article  CAS  PubMed  Google Scholar 

  19. Kikuchi H, Yajima T (1992) Correlation between water-holding capacity of different types of cellulose in vitro and gastrointestinal retention time in vivo of rats. J Sci Food Agric 60:139–146

    Article  CAS  Google Scholar 

  20. Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, Saitoh T, Yamaoka S, Yamamoto N, Yamamoto S, Muta T, Takeda K, Akira S (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430:218–222

    Article  CAS  PubMed  Google Scholar 

  21. Hirotani T, Lee PY, Kuwata H, Yamamoto M, Matsumoto M, Kawase I, Akira S, Takeda K (2005) The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J Immunol 174:3650–3657

    CAS  PubMed  Google Scholar 

  22. Sharma RJ, Macallan DC, Sedgwick P, Remick DG, Griffin GE (1992) Kinetics of endotoxin-induced acute-phase protein gene expression and its modulation by TNF-alpha monoclonal antibody. Am J Physiol 262:R786–R793

    CAS  PubMed  Google Scholar 

  23. Swerdlow MP, Kennedy DR, Kennedy JS, Washabau RJ, Henthorn PS, Moore PF, Carding SR, Felsburg PJ (2006) Expression and function of TLR2, TLR4, and Nod2 in primary canine colonic epithelial cells. Vet Immunol Immunopathol 114:313–319

    Article  CAS  PubMed  Google Scholar 

  24. Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, Wahl LM, Fenton MJ, Vogel SN (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 282:16042–16053

    Article  CAS  PubMed  Google Scholar 

  25. Anand RJ, Kohler JW, Cavallo JA, Li J, Dubowski T, Hackam DJ (2007) Toll-like receptor 4 plays a role in macrophage phagocytosis during peritoneal sepsis. J Pediatr Surg 42:927–932, discussion 933

    Article  PubMed  Google Scholar 

  26. Simitsopoulou M, Roilides E, Paliogianni F, Likartsis C, Ioannidis J, Kanellou K, Walsh TJ (2008) Immunomodulatory effects of voriconazole on monocytes challenged with Aspergillus fumigatus: differential role of Toll-like receptors. Antimicrob Agents Chemother 52:3301–3306

    Article  CAS  PubMed  Google Scholar 

  27. Ziegeler S, Raddatz A, Hoff G, Buchinger H, Bauer I, Stockhausen A, Sasse H, Sandmann I, Hörsch S, Rensing H (2006) Antibiotics modulate the stimulated cytokine response to endotoxin in a human ex vivo, in vitro model. Acta Anaesthesiol Scand 50:1103–1110

    Article  CAS  PubMed  Google Scholar 

  28. Yasutomi M, Ohshima Y, Omata N, Yamada A, Iwasaki H, Urasaki Y, Mayumi M (2005) Erythromycin differentially inhibits lipopolysaccharide- or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells. J Immunol 175:8069–8076

    CAS  PubMed  Google Scholar 

  29. Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164:3471–3475

    CAS  PubMed  Google Scholar 

  30. Saitoh S, Miyake K (2006) Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem Rec 6:311–319

    Article  CAS  PubMed  Google Scholar 

  31. Fujimoto T, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T (2004) The amino-terminal region of toll-like receptor 4 is essential for binding to MD-2 and receptor translocation to the cell surface. J Biol Chem 279:47431–47437

    Article  CAS  PubMed  Google Scholar 

  32. Wakabayashi Y, Kobayashi M, Akashi-Takamura S, Tanimura N, Konno K, Takahashi K, Ishii T, Mizutani T, Iba H, Kouro T, Takaki S, Takatsu K, Oda Y, Ishihama Y, Saitoh S, Miyake K (2006) A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol 177:1772–1779

    CAS  PubMed  Google Scholar 

  33. Saitoh SI (2009) Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology [Epub ahead of print]

  34. Yanagimoto S, Tatsuno K, Okugawa S, Kitazawa T, Tsukada K, Koike K, Kodama T, Kimura S, Shibasaki Y, Ota Y (2009) A single amino acid of toll-like receptor 4 that is pivotal for its signal transduction and subcellular localization. J Biol Chem 284:3513–3520

    Article  CAS  PubMed  Google Scholar 

  35. Visintin A, Halmen KA, Khan N, Monks BG, Golenbock DT, Lien E (2006) MD-2 expression is not required for cell surface targeting of Toll-like receptor 4 (TLR4). J Leukoc Biol 80:1584–1592

    Article  CAS  PubMed  Google Scholar 

  36. Begon E, Michel L, Flageul B, Beaudoin I, Jean-Louis F, Bachelez H, Dubertret L, Musette P (2007) Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 17:497–506

    CAS  PubMed  Google Scholar 

  37. Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004

    CAS  PubMed  Google Scholar 

  38. Mita Y, Dobashi K, Shimizu Y, Nakazawa T, Mori M (2001) Toll-like receptor 2 and 4 surface expressions on human monocytes are modulated by interferon-gamma and macrophage colony-stimulating factor. Immunol Lett 78:97–101

    Article  CAS  PubMed  Google Scholar 

  39. Mita Y, Dobashi K, Endou K, Kawata T, Shimizu Y, Nakazawa T, Mori M (2002) Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Lett 81:71–75

    Article  CAS  PubMed  Google Scholar 

  40. Shimura H, Nitahara A, Ito A, Tomiyama K, Ito M, Kawai K (2005) Up-regulation of cell surface Toll-like receptor 4-MD2 expression on dendritic epidermal T cells after the emigration from epidermis during cutaneous inflammation. J Dermatol Sci 37:101–110

    Article  CAS  PubMed  Google Scholar 

  41. Frleta D, Noelle RJ, Wade WF (2003) CD40-mediated up-regulation of Toll-like receptor 4-MD2 complex on the surface of murine dendritic cells. J Leukocyte Biol 74:1064–1073

    Article  CAS  PubMed  Google Scholar 

  42. Nicaise P, Gleizes A, Sandre C, Forestier F, Kergot R, Quero AM, Labarre C (1998) Influence of intestinal microflora on murine bone marrow and spleen macrophage precursors. Scand J Immunol 48:585–591

    Article  CAS  PubMed  Google Scholar 

  43. Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (#18591988 for NS) and was not commercially supported. The authors thank Rodolphe Ruffy, MD, for reviewing the style and language of this manuscript.

Disclosure

No author has a potential conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Shime.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umenai, T., Hirai, H., Shime, N. et al. Eradication of the commensal intestinal microflora by oral antimicrobials interferes with the host response to lipopolysaccharide. Eur J Clin Microbiol Infect Dis 29, 633–641 (2010). https://doi.org/10.1007/s10096-010-0905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-010-0905-3

Keywords

Navigation