Abstract
In this paper, we propose a new handwritten digit recognition method which works in a very similar way as human perception. The digit image boundary is decomposed into four salient visual primitives, namely closure, smooth curve, protrusion and straight segment by defining a set of external symmetry axis. Unlike the conventional algorithms, our low complexity shape decomposition method neither searches for curvature minima nor finds optimal parsing by using shortcut and convexity rules. Based on the spatial configuration of extracted primitives, the recognizer classifies a test digit image using a set of classification rules. The performance of our proposed recognition system is evaluated on five digit datasets of four popular scripts, Odia, Bangla, Arabic and English. The recognition accuracies on the ISI Kolkata Odia and Bangla, IITBBS Odia, CMATERdb Arabic and MNIST English digit datasets are found to be 99.02, 99.25, 99.66, 97.96 and 99.11%, respectively. The proposed method outperforms the existing recognition systems on both the Odia digit datasets and achieves comparable performance in other cases.
Similar content being viewed by others
Notes
IITBBS Odia Handwriting Database: www.iitbbs.ac.in/profile.php/nbpuhan.
References
Plamondon R, Srihari SN (2000) Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 22(1):63–84
Arica N, Yarman-Vural FT (2001) An overview of character recognition focused on off-line handwriting. IEEE Trans Syst Man Cybern Part C Appl Rev 31(2):216–233
Belongie S, Malik J, Puzicha J (2002) Shape matching and object recognition using shape contexts. IEEE Trans Pattern Anal Mach Intell 24(4):509–522
Khotanzad A, Yong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497
Belkasim SO, Shridhar M, Ahmadi M (1991) Pattern recognition with moment invariants: a comparative study and new results. Pattern Recogn 24(2):1117–1138
Roy K, Pal T, Pal U, Kimura F (2005) Oriya handwritten digit recognition system. In: Proceedings of IEEE 8th international conference on document analysis and recognition, ICDAR 2005, pp 770–774
Pal U, Sharma N, Wakabayashi T, Kimura F (2007) Handwritten digit recognition of six popular Indian scripts. In: Proceedings of IEEE 9th international conference on document analysis and recognition, ICDAR 2007, pp 749–753
Wen Y, Lu Y, Shi P (2007) Handwritten Bangla digit recognition system and its application to postal automation. Pattern Recogn 40(1):99–107
Liu CL, Nakashima K, Sako H, Fujisawa H (2004) Handwritten digit recognition: investigation of normalization and feature extraction techniques. Pattern Recogn 37(2):265–279
Dash KS, Puhan NB, Panda G (2014) A hybrid feature and discriminant classifier for high accuracy Odia handwritten digit recognition. In: IEEE region 10 technical symposium, TENSYMP’14, pp 531–535
Chen G, Bui TD (1999) Invariant Fourier-wavelet descriptor for pattern recognition. Pattern Recogn 32(7):1083–1088
Bhattacharya U, Chaudhuri BB (2009) Handwritten digit databases of Indian scripts and multistage recognition of mixed digits. IEEE Trans Pattern Anal Mach Intell 31(3):444–457
Dash KS, Puhan NB, Panda G (2014) Non-redundant stockwell transform based feature extraction for handwritten digit recognition. In: Proceedings of IEEE signal processing and communication (SPCOM’14), pp 1–4
Trier ØD, Jain AK, Taxt T (1996) Feature extraction methods for character recognition-a survey. Pattern Recogn 29(4):641–662
Jayadevan R, Kolhe SR, Patil PM, Pal U (2011) Offline recognition of Devanagari script: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(6):782–796
Jain AK, Zhong Y, Lakshmanan S (1996) Object matching using deformable templates. IEEE Trans Pattern Anal Mach Intell 18(3):267–278
Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell 32(9):1627–1645
Jain AK, Zongker D (1997) Representation and recognition of handwritten digits using deformable templates. IEEE Trans Pattern Anal Mach Intell 19(12):1386–1390
Teow LN, Loe KF (2002) Robust vision-based features and classification schemes for off-line handwritten digit recognition. Pattern Recogn 35(11):2355–2364
Vamvakas G, Gatos B, Perantonis SJ (2010) Handwritten character recognition through two-stage foreground sub-sampling. Pattern Recogn 43(8):2807–2816
Shi D, Gunn SR, Damper RI (2003) Handwritten Chinese radical recognition using nonlinear active shape models. IEEE Trans Pattern Anal Mach Intell 25(2):277–280
Zhao C, Shi W, Deng Y (2005) A new Hausdorff distance for image matching. Pattern Recogn Lett 26(5):581–586
Liu MY, Tuzel O, Veeraraghavan A, Chellappa R (2010) Fast directional chamfer matching. In: Proceedings of IEEE computer vision and pattern recognition (CVPR), pp 1696–1703
Atallah MJ (2001) Faster image template matching in the sum of the absolute value of differences measure. IEEE Trans Image Process 10(4):659–663
Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classification. In: Proceedings of IEEE computer vision and pattern recognition (CVPR), pp 3642–3649
Blake R, Sekuler R (2005) Perception. McGraw-Hill, New York
Hoffman DD, Singh M (1997) Salience of visual parts. Cognition 63(1):29–78
Pilu M, Fisher RB (1997) Model-driven grouping and recognition of generic object parts from single images. Robot Auton Syst 21(1):107–122
Zhu L, Chen Y, Torralba A, Freeman W, Yuille A (2010) Part and appearance sharing: Recursive compositional models for multi-view. In: Proceedings of IEEE computer vision and pattern recognition (CVPR), pp 1919–1926
Basri R, Costa L, Geiger D, Jacobs D (1998) Determining the similarity of deformable shapes. Vis Res 38(15):2365–2385
Lien JM, Amato NM (2004) Approximate convex decomposition of polygons. In: Proceedings of ACM 20th annual symposium on Computational geometry, pp 17–26
Lu Y, Lien JM, Ghosh M, Amato NM (2012) α-decomposition of polygons. Comput Graph 36(5):466–476
Latecki LJ, Lakämper R (1999) Convexity rule for shape decomposition based on discrete contour evolution. Comput Vis Image Underst 73(3):441–454
Liu H, Liu W, Latecki LJ (2010) Convex shape decomposition. In: Proceedings of IEEE computer vision and pattern recognition (CVPR), pp 97–104
Ren Z, Yuan J, Li C, Liu W (2011) Minimum near-convex decomposition for robust shape representation. In: Proceedings of IEEE international conference on computer vision (ICCV), pp 303–310
Jiang T, Dong Z, Ma C, Wang Y (2013) Toward perception-based shape decomposition. In: Proceedings of Asian conference on computer vision (ACCV). Springer, Berlin, pp 188–201
Ma C, Dong Z, Jiang T, Wang Y, Gao W (2013) A method of perceptual-based shape decomposition. In: Proceedings of IEEE international conference on computer vision (ICCV), pp 873–880
Ghosh M, Amato NM, Lu Y, Lien J-M (2013) Fast approximate convex decomposition using relative concavity. Comput Aided Des 45(2):494–504
Luo L, Shen C, Liu X, Zhang C (2015) A computational model of the short-cut rule for 2D shape decomposition. IEEE Trans Image Process 24(1):273–283
Biederman I (1987) Recognition-by-components: a theory of human image understanding. Psychol Rev 94(2):115–147
Kaick OV, Fish N, Kleiman Y, Asafi S, Cohen-Or D (2014) Shape segmentation by approximate convexity analysis. ACM Trans Graph (TOG) 34(1):4
Hoffman DD, Richards WA (1984) Parts of recognition. Cognition 18(1):65–96
Singh M, Seyranian GD, Hoffman DD (1999) Parsing silhouettes: the short-cut rule. Percept Psychophys 61(4):636–660
Singh M, Hoffman DD (2001) 13-Part-based representations of visual shape and implications for visual cognition. Adv Psychol 130:401–459
Gopalan R, Turaga P, Chellappa R (2010) Articulation-invariant representation of non-planar shapes. In: Proceedings of computer vision (ECCV). Springer, Berlin, pp 286–299\
Rosin PL (2000) Shape partitioning by convexity. IEEE Trans Syst Man Cybern Part A 30(2):202–210
De Winter J, Wagemans J (2006) Segmentation of object outlines into parts: a large-scale integrative study. Cognition 99(3):275–325
Macrini D, Siddiqi K, Dickinson S (2008) From skeletons to bone graphs: medial abstraction for object recognition. In: Proceedings of IEEE computer vision and pattern recognition (CVPR), pp 1–8
Siddiqi K, August J, Zucker SW (1999) Ligature instabilities in the perceptual organization of shape. Comput Vis Image Underst 76(3):231–243
Zhu SC (1999) Stochastic jump-diffusion process for computing medial axes in Markov random fields. IEEE Trans Pattern Anal Mach Intell 21(11):1158–1169
Siddiqi K, Kimia BB (1995) Parts of visual form: computational aspects. IEEE Trans Pattern Anal Mach Intell 17(3):239–251
Mi X, DeCarlo D (2007) Separating parts from 2D shapes using relatability. In: Proceedings of IEEE 11th international conference on computer vision (ICCV), pp 1–8
Pitas I, Venetsanopoulos AN (1990) Morphological shape decomposition. IEEE Trans Pattern Anal Mach Intell 12(1):38–45
Xu J (2001) Morphological decomposition of 2-D binary shapes into convex polygons: a heuristic algorithm. IEEE Trans Image Process 10(1):61–71
Wang D, Haese-Coat V, Ronsin J (1995) Shape decomposition and representation using a recursive morphological operation. Pattern Recogn 28(11):1783–1792
Vanderheydt L, Dom F, Oosterlinck A, Van den Berghe H (1981) Two-dimensional shape decomposition using fuzzy subset theory applied to automated chromosome analysis. Pattern Recogn 13(2):147–157
Draper NR, Smith H, Pownell E (1966) Applied regression analysis, vol 3. Wiley, New York
Gonzalez RC (2009) Digital image processing. Pearson Education India, Prentice-Hall
Bhattacharya U, Chaudhuri BB (2005) Databases for research on recognition of handwritten characters of Indian scripts. In: Proceedings of IEEE 8th international conference on document analysis and recognition (ICDAR), pp 789–793
Bhowmik TK, Parui SK, Bhattacharya U, Shaw B (2006) An HMM based recognition scheme for handwritten Oriya digits. In: Proceedings of IEEE 9th international conference on information technology, pp 105–110
Dash KS, Puhan NB, Panda G (2015) Gestalt configural superiority effect: a complexity paradigm for handwritten digit recognition. In: Proceedings of IEEE eighth international conference on advances in pattern recognition (ICAPR), pp 1–6
Roy K, Chaudhuri C, Pal U Kundu M (2005) A study on the effect of varying training set sizes on recognition performance with handwritten bangla digits. In: Proceedings of IEEE annual INDICON, pp 570–574
Pal U, Belaïd A (2006) A system for Bangla handwritten digit recognition. IETE J Res 52(1):27–34
Liu CL, Suen CY (2009) A new benchmark on the recognition of handwritten Bangla and Farsi digit characters. Pattern Recogn 42(12):3287–3295
Purkait P, Chanda B (2010) Off-line recognition of hand-written bengali digits using morphological features. In: Proceedings of IEEE international conference on frontiers in handwriting recognition (ICFHR), pp 363–368
Basu S, Das N, Sarkar R, Kundu M, Nasipuri M, Basu DK (2010) A novel framework for automatic sorting of postal documents with multi-script address blocks. Pattern Recogn 43(10):3507–3521
Wen Y, He L (2012) A classifier for Bangla handwritten digit recognition. Expert Syst Appl 39(1):948–953
Ciresan DC, Meier U, Masci J, Maria Gambardella L, Schmidhuber J (2011) Flexible, high performance convolutional neural networks for image classification. In: Proceedings of international joint conference on artificial intelligence (IJCAI), vol 22, pp 1237–1242
Jarrett K, Kavukcuoglu K, Ranzato M, LeCun Y (2009) What is the best multi-stage architecture for object recognition? In: Proceedings of IEEE 12th international conference on computer vision (ICCV), pp 2146–2153
Singh S, Gupta A, Efros AA (2012) Unsupervised discovery of mid-level discriminative patches. In: Proceedings of computer vision–ECCV. Springer, Berlin, pp 73–86
Doersch C, Singh S, Gupta A, Sivic J, Efros AA (2012) What makes Paris look like Paris? ACM Trans Graph 31(4):101
Suen CY, Guo J, Li ZC (1992) Analysis and recognition of alphanumeric handprints by parts. In: Proceedings of IEEE 11th international conference on pattern recognition, pp 338–341
Li CZ, Li HJ, Suen CY, Wang HQ, Liao SY (2002) Recognition of handwritten characters by parts with multiple orientations. Math Comput Model 35(3):441–479
Dash KS, Puhan NB, Panda G (2015) Handwritten numeral recognition using non-redundant Stockwell transform and bio-inspired optimal zoning. IET Image Process 9(10):874–882
Das N, Mollah AF, Sarkar R, Basu S (2010) A comparative study of different feature sets for recognition of handwritten Arabic numerals using a Multi-Layer Perceptron. Preprint arXiv:1003.1894
Das N, Reddy JM, Sarkar R et al (2012) A statistical–topological feature combination for recognition of handwritten numerals. Appl Soft Comput 12(8):2486–2495
Cecotti H (2016) Active graph based semi-supervised learning using image matching: application to handwritten digit recognition. Pattern Recogn Lett 73:76–82
Liu CL, Nakashima K, Sako H, Fujisawa H (2003) Handwritten digit recognition: benchmarking of state-of-the-art techniques. Pattern Recogn 36(10):2271–2285
http://yann.lecun.com/exdb/mnist/. Accessed 10 Sept 2016
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dash, K.S., Puhan, N.B. & Panda, G. Unconstrained handwritten digit recognition using perceptual shape primitives. Pattern Anal Applic 21, 413–436 (2018). https://doi.org/10.1007/s10044-016-0586-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10044-016-0586-3