Abstract
The recharge flow paths in a typical weathered hard-rock aquifer in a semi-arid area of southern India were investigated in relation to structures associated with a managed aquifer recharge (MAR) scheme. Despite the large number of MAR structures, the mechanisms of recharge in their vicinity are still unclear. The study uses a percolation tank as a tool to identify the input signal of the recharge and uses multiple measurements (piezometric time series, electrical conductivity profiles in boreholes) compared against heat-pulse flowmeter measurements and geochemical data (major ions and stable isotopes) to examine recharge flow paths. The recharge process is a combination of diffuse piston flow and preferential flow paths. Direct vertical percolation appears to be very limited, in contradiction to the conceptual model generally admitted where vertical flow through saprolite is considered as the main recharge process. The horizontal component of the flow leads to a strong geochemical stratification of the water column. The complex recharge pattern, presented in a conceptual model, leads to varied impacts on groundwater quality and availability in both time and space, inducing strong implications for water management, water quality evolution, MAR monitoring and longer-term socio-economic costs.
Résumé
Les chemins d’écoulements lors de la recharge d’un aquifère typique de socle altéré en zone semi-aride d’Inde du Sud ont été étudiés en relation aux structures associées au schéma de recharge artificielle d’aquifère. Malgré un grand nombre de structures de recharge artificielle dans la région, les mécanismes d’écoulement à leur proximité restent peu connus. Cette étude utilise un bassin de percolation comme un outil pour identifier le signal de recharge et utilise de multiples mesures (séries piézométriques, profils de conductivité électrique en forages) appuyées par des mesures de débitmètre à impulsions de chaleur en forage et de données géochimiques (ions majeurs et isotopes stables), pour déterminer les chemins d’écoulements de la recharge. Le processus de recharge apparait comme une combinaison de déplacement convectif diffus des écoulements et de chemins d’écoulements préférentiels. La percolation verticale directe semble très limitée, en opposition au modèle conceptuel généralement admis où l’écoulement vertical à travers la saprolite est considéré comme le processus principal de recharge. La composante horizontale du flux crée une forte stratification géochimique de la colonne d’eau. Le schéma complexe des écoulements de recharge présenté dans un modèle conceptuel traduit des impacts variés sur la qualité des eaux souterraines et leur disponibilité aussi bien dans l’espace que dans le temps, ayant des conséquences importantes pour la gestion de l’eau, l’évolution de la qualité de l’eau et la surveillance des structures de recharge artificielle, le tout pouvant engendrer des coûts socio-économiques importants sur le long terme.
Resumen
Se investigaron las trayectorias del flujo de recarga en un acuífero típico de roca dura meteorizada en una zona semiárida del sur de la India en relación con las estructuras asociadas con un esquema de manejo de recarga de los acuíferos (MAR). A pesar del gran número de estructuras del MAR, los mecanismos de recarga en la vecindad aún no están claros. El estudio utiliza un tanque de percolación como una herramienta para identificar la señal de entrada de la recarga y utiliza mediciones múltiples (series temporales de datos piezométricos, perfiles de conductividad eléctrica en los pozos) en comparación con las mediciones del flujímetro por pulsos de calor y datos geoquímicos (iones principales e isótopos estables) para examinar las vías de flujo de la recarga. El proceso de recarga es una combinación de flujo difuso de pistón y las trayectorias preferenciales de flujo. La percolación vertical directa parece ser muy limitada, en contradicción con el modelo conceptual generalmente admitido donde el flujo vertical a través del saprolito está considerado como el principal proceso de recarga. El componente horizontal del flujo conduce a una fuerte estratificación geoquímica en la columna de agua. El patrón complejo de la recarga, se presenta en un modelo conceptual, que conduce a variados impactos en la calidad y disponibilidad del agua subterránea en tiempo y espacio, induciendo a fuertes implicancias para el manejo del agua, la evolución de la calidad del agua, el monitoreo MAR y los costos socio-económicos a largo plazo.
摘要
针对含水层补给管理计划相关设施,调查了印度南部半干旱地区典型风化硬岩含水层中的补给水流通道。尽管有众多的含水层补给管理设施,但周围的补给机理仍然不清楚。本研究中,采用渗透箱作为确定补给输入信号工具,采用多重测量结果(测压时间序列、钻孔的电导率剖面)与热脉冲流量计测量结果和地球化学资料(主要离子和稳定同位素)进行比较,以检测补给水流通道。直接垂直渗透看上去非常有限,这与概念模型通常得出的结果不一致,在概念模型中,通过风化土的垂直流被认为是主要补给过程。水流的横向成分导致水柱强烈的地球化学分层现象。概念模型展示的复杂补给模式导致在时间和空间上对地下水水质和可用性产生各种影响,对于水管理、水质演化、含水层补给管理监测和长期社会经济成本具有重要的启示作用。
Resumo
A trajetória do fluxo de recarga em um típico aquífero cristalino intemperizado em área semiárida do sudeste da Índia foi investigada, em relação às estruturas associadas à gestão da recarga de aquífero (GRA). Apesar do grande número de estruturas GRA, os mecanismos de recarga em sua proximidade ainda são desconhecidos. O estudo utiliza um tanque de percolação como uma ferramenta para identificar o sinal de entrada da recarga e compara várias medidas (séries temporais de piezometria, perfis de condutividade elétrica em poços) com medidas de pulso de calor de um medidor de vazão e dados geoquímicos (íons principais e isótopos estáveis) para examinar a trajetória do fluxo de recarga. A percolação vertical direta parece ser muito limitada, em contradição com o modelo conceitual geralmente adotado em que o fluxo vertical por meio do saprólito é considerado como um dos principais processos de recarga. A componente horizontal do fluxo conduz a uma forte estratificação geoquímica da coluna de água. O complexo padrão de recarga, apresentado em um modelo conceitual, ocasiona impactos variados na qualidade e na disponibilidade de águas subterrâneas tanto no tempo como no espaço, gerando fortes implicações para o gerenciamento de água, evolução da qualidade da água, monitoramento GRA e custos socioeconômicos de longo prazo.
Similar content being viewed by others
References
Acworth RI (1987) The development of crystalline basement aquifers in a tropical environment. Q J Eng Geol Hydrogeol 20:265–272. doi:10.1144/GSL.QJEG.1987.020.04.02
Adhikari RN, Singh AK, Math SKN, Raizada A, Mishra PK, Reddy KK (2013) Augmentation of groundwater recharge and water quality improvement by water harvesting structures in the semi-arid Deccan. Current Sci (Bangalore) 104(11):1534--1542
Athavale RN, Chand R, Rangarajan R (1983) Groundwater recharge estimates for two basins in the Deccan Trap basalt formation / Estimation de la recharge des eaux souterraines de deux bassins dans la formation de basalte du Deccan Trap. Hydrol Sci J 28–4:525–538
Aulong S, Chaudhuri B, Farnier L et al (2012) Are South Indian farmers adaptable to global change? A case in an Andhra Pradesh catchment basin. Reg Environ Chang 12:423–436. doi:10.1007/s10113-011-0258-1
Batchelor CH, Rama Mohan Rao MS, Manohar Rao S (2003) Watershed development: a solution to water shortages in semi-arid India or part of the problem. Land Use Water Resour Res 3:1–10
Boisson A, Baisset M, Alazard M et al (2014) Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures: case of a percolation tank in a crystalline aquifer in India. J Hydrol 519(B):1620–1633. doi:10.1016/j.jhydrol.2014.09.022
Boisson A, Guihéneuf N, Perrin J, Bour O, Dewandel B, Dausse A, Viossanges M, Ahmed S, Maréchal JC (2015) Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline rocks aquifers: insights from a study on an instrumented site. Hydrogeol J. doi:10.1007/s10040-014-1226-x
Bouma JA, Biggs TW, Bouwer LM (2011) The downstream externalities of harvesting rainwater in semi-arid watersheds: an Indian case study. Agric Water Manag 98(7):1162--1170
Boutt DF, Diggins P, Mabee S (2010) A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain. Hydrogeol J 18:1839–1854. doi:10.1007/s10040-010-0640-y
Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423--423
Calder I, Gosain A, Rao MSRM et al (2008) Watershed development in India, 1: biophysical and societal impacts. Environ Dev Sustain 10:537–557. doi:10.1007/s10668-006-9079-7
CGWB (2007) Manual on artificial recharge to groundwater. Central Ground Water Board, New Delhi
CGWB (2009) Dynamic ground water resources of India. Central Ground Water Board, New Delhi
Chilton P, Foster SS (1995) Hydrogeological characterisation and water supply potential of basement aquifers in tropical Africa. Hydrogeol J 3(1):36–49
de Silva CS, Rushton KR (2007) Groundwater recharge estimation using improved soil moisture balance methodology for a tropical climate with distinct dry seasons. Hydrol Sci J 52(5):1051--1067
de Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17. doi:10.1007/s10040-001-0171-7
Dewandel B, Lachassagne P, Wyns R et al (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284. doi:10.1016/j.jhydrol.2006.03.026
Dillon P (2009) Water recycling via managed aquifer recharge in Australia. Bol Geol Min 120:121–130
Drew L, Shuenemeyer J, Armstrong T, Sutphin D (2001) Initial yield to depth relation for water wells drilled into crystalline bedrocks: Pinardville Quadrangle, New Hampshire. Ground Water 39:676–684
Fishman RM, Siegfried T, Raj P et al (2011) Over-extraction from shallow bedrock versus deep alluvial aquifers: reliability versus sustainability considerations for India’s groundwater irrigation. Water Resour Res. doi:10.1029/2011WR010617
Gale IN, Macdonald DMJ, Calow RC, et al (2006) Managed aquifer recharge: an assessment of its role and effectiveness in watershed management. Final report, DFID KAR project R8169, DFID, London
Gleeson T, Novakowski K, Kyser T (2009) Extremely rapid and localized recharge to a fractured rock aquifer. J Hydrol 376:496–509
Glendenning CJ, Van Ogtrop FF, Mishra AK, Vervoort RW (2012) Balancing watershed and local scale impacts of rain water harvesting in India: a review. Agric Water Manag 107:1–13. doi:10.1016/j.agwat.2012.01.011
Gore KP, Pendke MS, Gurunadha Rao VVS, Gupta CP (1998) Groundwater modelling to quantify the effect of water harvesting structures in Wagarwadi watershed, Parbhani district, Maharashtra, India. Hydrol Process 12:1043–1052. doi:10.1002/(SICI)1099-1085(19980615)12:7<1043::AID-HYP638>3.0.CO;2-I
Guihéneuf N, Boisson A, Bour O et al (2014) Groundwater flows in weathered crystalline rocks: impact of piezometric variations and depth-dependent fracture connectivity. J Hydrol 511:320–334. doi:10.1016/j.jhydrol.2014.01.061
Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeol J 10:91–109. doi:10.1007/s10040-001-0178-0
Herczeg AL, Leaney FW (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19:17–29. doi:10.1007/s10040-010-0652-7
Jiménez-Martínez J, Longuevergne L, Le Borgne T et al (2013) Temporal and spatial scaling of hydraulic response to recharge in fractured aquifers: insights from a frequency domain analysis: temporal and spatial scaling in fractured aquifers. Water Resour Res 49:3007–3023. doi:10.1002/wrcr.20260
Kerr J, Pangare G, Pangare VL (2002) Watershed development project in India: an evaluation. International Food Policy Research Institute, Washington, DC
Kumar MD, Gosh S, Patel A, Singh OP, Ravindranath R (2006) Rainwater harvesting in India: some critical issues for basin planning and research. Land Use Water Resour Res 6:1–17
Kumar MD, Patel A, Ravindranath R, Singh OP (2008) Chasing a mirage: water harvesting and artificial recharge in naturally water-scarce regions. Econ Polit Wkly 43:61–71
Kumar SB, Rai P, Saravana Kumar U et al (2010) Isotopic characteristics of Indian precipitation. Water Resour Res 46:W12548. doi:10.1029/2009WR008532
Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer: fracture network properties in hard rock. Water Resour Res 40. doi: 10.1029/2004WR003137
Maréchal JC, Dewandel B, Ahmed S et al (2006) Combined estimation of specific yield and natural recharge in a semi-arid groundwater basin with irrigated agriculture. J Hydrol 329:281–293. doi:10.1016/j.jhydrol.2006.02.022
Massuel S, George BA, Venot J-P, Bharati L, Acharya S (2013) Improving assessment of groundwater-resource sustainability with deterministic modelling: a case study of the semi-arid Musi sub-basin, South India. Hydrogeol J. doi:10.1007/s10040-013-1030-z
Massuel S, Perrin J, Mascre C et al (2014) Managed aquifer recharge in South India: what to expect from small percolation tanks in hard rock? J Hydrol 512:157–167. doi:10.1016/j.jhydrol.2014.02.062
Metha M, Jain S K (1997) Efficiency of artificial recharge from percolation tanks. In Simmers I (ed) Recharge of phreatic aquifers in (semi-)arid areas. IAH Int. Contrib. Hydrogeol. 19, Taylor and Francis, London, pp 271–277
Mukherji A, Shah T (2005) Groundwater socio-ecology and governance: a review of institutions and policies in selected countries. Hydrogeol J 13:328–345. doi:10.1007/s10040-005-0434-9
Negrel P, Pauwels H, Dewandel B et al (2011) Understanding groundwater systems and their functioning through the study of stable water isotopes in a hard-rock aquifer (Maheshwaram watershed, India). J Hydrol 397:55–70
Oblinger JA, Moysey SMJ, Ravindrinath R, Guha C (2010) A pragmatic method for estimating seepage losses for small reservoirs with application in rural India. J Hydrol 385:230–237. doi:10.1016/j.jhydrol.2010.02.023
Paillet FL (1998) Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations. Water Resour Res 34:997–1010
Perrin J, Ahmed S, Hunkeler D (2011a) The effects of geological heterogeneities and piezometric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern India. Hydrogeol J 19:1189–1201. doi:10.1007/s10040-011-0745-y
Perrin J, Mascré C, Pauwels H, Ahmed S (2011b) Solute recycling: an emerging threat to groundwater quality in southern India? J Hydrol 398:144–154
Pettenati M, Perrin J, Pauwels H et al (2013) Simulating fluoride evolution in groundwater using a reactive multicomponent transient transport model: application to a crystalline aquifer of southern India. Appl Geochem 29:102–116
Pettenati M, Picot-Colbeaux G, Thiéry D et al (2014) Water quality evolution during Managed Aquifer Recharge (MAR) in Indian crystalline basement aquifers: reactive transport modeling in the critical zone. Proc Earth Planet Sci 10:82–87. doi:10.1016/j.proeps.2014.08.016
Rangarajan R, Athavale RN (2000) Annual replenishable ground water potential of India: an estimate based on injected tritium studies. J Hydrol 234:38–53
Rodhe A, Bockgard N (2006) Groundwater recharge in a hard rock aquifer: a conceptual model including surface-loading effects. J Hydrol 330:389–401
Ruiz L, Varmac MRR, Kumar MSM, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Kumar S, Kumar C, Braun JJ (2010) Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India): regolith matric storage buffers the groundwater recharge process. J Hydrol 380:460–472
Saha D, Dwivedi SN, Roy GK, Reddy DV (2013) Isotope-based investigation on the groundwater flow and recharge mechanism in a hard-rock aquifer system: the case of Ranchi urban area, India. Hydrogeol J 21:1101–1115
Sakthivadivel R (2007) The groundwater recharge movement in India. In: Giordano M, Villholth KG (eds) The agricultural groundwater revolution: opportunities and threats to development. CABI, Wallingford, UK
Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35(4):461–490
Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3370
Shah T (2009) Taming the anarchy: groundwater governance in South Asia. Earthscan, London, 310 pp
Shanafield M, Cook PG, Brunner P et al (2012) Aquifer response to surface water transience in disconnected Streams. Water Resour Res 48:W11510. doi:10.1029/2012WR012103
Simmers I (1997) Groundwater recharge principles, problems and developments. In: Simmers I, Hendrickx JMH, Kruseman GP, Rushton KR (eds) Recharge of phreatic aquifers in (semi-) arid areas. IAH, Wallingford, UK; Balkema, Rotterdam, The Netherlands
Stiefel JM, Melesse AM, McClain ME et al (2009) Effects of rainwater-harvesting-induced artificial recharge on the groundwater of wells in Rajasthan, India. Hydrogeol J 17:2061–2073. doi:10.1007/s10040-009-0491-6
Sukhija BS, Reddy DV, Nagabhushanam P, Hussain S (2003) Recharge processes: piston flow vs preferential flow in semi-arid aquifers of India. Hydrogeol J 11:387–395. doi:10.1007/s10040-002-0243-3
Sukhija BS, Reddy DV, Nagabhushanam P et al (2006) Characterisation of recharge processes and groundwater flow mechanisms in weathered-fractured granites of Hyderabad (India) using isotopes. Hydrogeol J 14:663–674
Van der Hoven SJ, Solomon DK, Moline GR (2003) Modeling unsaturated flow and transport in the saprolite of fractured sedimentary rocks: effects of periodic wetting and drying: modeling unsaturated flow and transport. Water Resour Res 39. doi: 10.1029/2002WR001926
Warrier CU, Babu MP (2012) A study on the spatial variations in stable isotopic composition of precipitation in a semiarid region of southern India. Hydrol Process 26:3791–3799. doi:10.1002/hyp.8453
White AF, Bullen TD, Schulz MS, Blum AE, Huntington TG, Peters NE (2001) Differential rates of feldspar weathering in granitic regoliths. Geochem Cosmochem Acta 65-6: 847–869
Wyns R, Baltassat JM, Lachassagne P et al (2004) Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Geol Fr 175(1): 21–34
Acknowledgements
This study was carried out at the Indo-French Center for Ground Water Research (BRGM-NGRI). The authors thank the French Ministry of Foreign Affairs and the Embassy in India for their support. This report has benefited immensely from the detailed comments and improvements provided by the editors and the anonymous reviewers. The authors also wish to acknowledge help from Wajid Uddin and David Villesseche for fieldwork.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alazard, M., Boisson, A., Maréchal, JC. et al. Investigation of recharge dynamics and flow paths in a fractured crystalline aquifer in semi-arid India using borehole logs: implications for managed aquifer recharge. Hydrogeol J 24, 35–57 (2016). https://doi.org/10.1007/s10040-015-1323-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-015-1323-5