[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Optimization over the Efficient Set in Linear Multicriteria Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The efficient set of a linear multicriteria programming problem can be represented by a reverse convex constraint of the form g(z)≤0, where g is a concave function. Consequently, the problem of optimizing some real function over the efficient set belongs to an important problem class of global optimization called reverse convex programming. Since the concave function used in the literature is only defined on some set containing the feasible set of the underlying multicriteria programming problem, most global optimization techniques for handling this kind of reverse convex constraint cannot be applied. The main purpose of our article is to present a method for overcoming this disadvantage. We construct a concave function which is finitely defined on the whole space and can be considered as an extension of the existing function. Different forms of the linear multicriteria programming problem are discussed, including the minimum maximal flow problem as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Philip, J.: Algorithms for the vector maximization problem. Math. Program. 2, 207–229 (1972)

    Article  MATH  Google Scholar 

  2. Benson, H.P.: Optimization over the efficient set. J. Math. Anal. Appl. 98, 562–580 (1984)

    Article  MATH  Google Scholar 

  3. Benson, H.P.: An all-linear programming relaxation algorithm for optimizing over the efficient set. J. Glob. Optim. 1, 83–104 (1991)

    Article  MATH  Google Scholar 

  4. Benson, H.B., Lee, D.: Outcome-based algorithm for optimizing over the efficient set of a bicriteria linear programming problem. J. Optim. Theory Appl. 88, 77–105 (1996)

    Article  MATH  Google Scholar 

  5. Bolintineanu, S.: Minimization of a quasiconcave function over an efficient set. Math. Program. 61, 89–110 (1993)

    Article  Google Scholar 

  6. Dauer, J.P., Fosnaugh, T.A.: Optimization over the efficient set. J. Glob. Optim. 7, 261–277 (1995)

    Article  MATH  Google Scholar 

  7. Le-Thi, H.A., Pham, D.T., Muu, L.D.: Numerical solution for optimization over the efficient set by D.C. optimization algorithms. Oper. Res. Lett. 19, 117–128 (1996)

    Article  MATH  Google Scholar 

  8. Muu, L.D., Luc, L.T.: On equivalence between convex maximization and optimization over the efficient set. Vietnam J. Math. 24, 439–444 (1996)

    Google Scholar 

  9. Horst, R., Thoai, N.V.: Utility function programs and optimization over the efficient set in multiple objective decision making. J. Optim. Theory Appl. 92, 469–486 (1997)

    Article  Google Scholar 

  10. Horst, R., Thoai, N.V.: Maximizing a concave function over the efficient or weakly-efficient set. Eur. J. Oper. Res. 117, 239–252 (1999)

    Article  MATH  Google Scholar 

  11. Thoai, N.V.: A class of optimization problems over the efficient set of a multiple criteria nonlinear programming problem. Eur. J. Oper. Res. 122, 58–68 (2000)

    Article  MATH  Google Scholar 

  12. Thoai, N.V.: Conical algorithm in global optimization for optimizing over efficient sets. J. Glob. Optim. 18, 321–336 (2000)

    Article  MATH  Google Scholar 

  13. Thoai, N.V.: Convergence and application of a decomposition method using duality bounds for nonconvex global optimization. J. Optim. Theory Appl. 113, 165–193 (2002)

    Article  MATH  Google Scholar 

  14. Le-Thi, H.A., Pham, D.T., Thoai, N.V.: Combination between global and local methods for solving an optimization problem over the efficient set. Eur. J. Oper. Res. 142, 258–270 (2002)

    Article  MATH  Google Scholar 

  15. Yamamoto, Y.: Optimization over the efficient set: overview. J. Glob. Optim. 22, 285–317 (2002)

    Article  MATH  Google Scholar 

  16. Hillestad, R.J., Jacobsen, S.E.: Reverse Convex Programming. Appl. Math. Optim. 6, 63–78 (1980)

    Article  MATH  Google Scholar 

  17. Thoai, N.V.: Canonical D.C. programming techniques for solving a convex program with an additional constrains of multiplicative type. Computing 50, 241–253 (1993)

    Article  MATH  Google Scholar 

  18. Horst, R., Thoai, N.V.: Constraint decomposition algorithms in global optimization. J. Glob. Optim. 5, 333–348 (1994)

    Article  MATH  Google Scholar 

  19. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  20. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  21. Horst, R., Thoai, N.V.: D.C. programming: overview. J. Optim. Theory Appl. 103, 1–43 (1999)

    Article  Google Scholar 

  22. Yu, P.L.: Multiple Criteria Decision Making: Concepts, Techniques, and Extensions. Plenum, New York (1985)

    MATH  Google Scholar 

  23. Shi, J., Yamamoto, Y.: A global optimization method for minimum maximal flow problem. Acta Math. Vietnam. 22, 271–287 (1997)

    MATH  Google Scholar 

  24. Gotoh, J., Thoai, N.V., Yamamoto, Y.: Global optimization method for solving the minimum maximal flow problem. Optim. Methods Softw. 18, 395–415 (2003)

    Article  MATH  Google Scholar 

  25. Shigeno, M., Takahashi, I., Yamamoto, Y.: Minimum maximal flow problem—an optimization over the efficient set. J. Glob. Optim. 25, 425–443 (2003)

    Article  MATH  Google Scholar 

  26. Yamamoto, Y., Zenke, D.: Cut and split method for the minimum maximal flow problem. Pac. J. Optim. 1, 387–404 (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Thoai.

Additional information

Communicated by G. Leitmann.

The research was partly done while the third author was visiting the Department of Mathematics, University of Trier with the support by the Alexander von Humboldt Foundation. He thanks the university as well as the foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horst, R., Thoai, N.V., Yamamoto, Y. et al. On Optimization over the Efficient Set in Linear Multicriteria Programming. J Optim Theory Appl 134, 433–443 (2007). https://doi.org/10.1007/s10957-007-9219-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9219-8

Keywords

Navigation