[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Characterization of alumina interfaces in TBC systems

  • Interface Science in Thermal Barrier Coatings
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Interfacial segregants in thermally grown α-Al2O3 scales formed during high temperature exposure of thermal barrier coating systems reflect the oxygen-active dopants present in the bond coating and substrate, such as Y and Hf. These dopants diffuse outward and segregate to the substrate-alumina interface and the alumina grain boundaries. Related studies suggest that these segregants affect the growth and mechanical properties of the alumina-scale; however, the characterization of segregation in alumina formed on coated superalloy systems has been limited. Segregation examples evaluated using analytical transmission electron microscopy are given from traditional Pt-modified aluminide coatings and newer Pt diffusion coatings. Model systems are used to illustrate that grain boundary segregants on the columnar alumina boundaries are not because of the reverse diffusion of cations from the Y2O3-stabilized ZrO2 top coating, and that interstitial elements in the substrate likely affect the outward flux of cation dopants. The dynamic nature of this segregation and oxygen-potential gradient-driven diffusion is discussed in light of observations of substrate dopant and interstitial contents affecting coating performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Stecura S (1977) Am Ceram Soc Bull 56:1082

    CAS  Google Scholar 

  2. Miller RA (1984) J Am Ceram Soc 67:517

    CAS  Google Scholar 

  3. Strangman TE (1985) Thin Solid Films 127:93

    CAS  Google Scholar 

  4. Goward GW (1986) Mater Sci Technol 2:194

    CAS  Google Scholar 

  5. Cruse TA, Stewart SE, Ortiz M (1988) J Eng Gas Turbines Power 110:610

    CAS  Google Scholar 

  6. Goward GW (1998) Surf Coat Technol 108–109:73

    Google Scholar 

  7. Maloney MJ (2000) US Patent #6,117,560

  8. Leckie RM, Krämer S, Rühle M, Levi CG (2005) Acta Mater 53:3281

    CAS  Google Scholar 

  9. Krämer S, Yang J, Levi CG (2008) J Am Ceram Soc 91:576

    Google Scholar 

  10. Borom MP, Johnson CA, Peluso LA (1996) Surf Coat Technol 86–87:116

    Google Scholar 

  11. Meier SM, Nissley DM, Sheffler KD, Cruse TA (1992) J Eng Gas Turbines Power 114:258

    CAS  Google Scholar 

  12. Opila EJ (2004) Mater Sci Forum 461–464:765

    Google Scholar 

  13. Wukusick CS, Collins JF (1964) Mater Res Stand 4:637

    CAS  Google Scholar 

  14. Gupta DK, Duvall DS (1984) In: Gell M et al (eds) Superalloys 1984. TMS, Warrendale, PA, p 711

    Google Scholar 

  15. Pint BA (1996) Oxid Met 45:1

    CAS  Google Scholar 

  16. Pint BA, Wright IG, Lee WY et al (1998) Mater Sci Eng A245:201

    CAS  Google Scholar 

  17. Ikeda Y, Nii K, Yoshihara K (1983) Trans Japan Inst Metals 24:207

    Google Scholar 

  18. Smeggil JG, Funkenbusch AW, Bornstein NS (1986) Met Trans 17A:923

    CAS  Google Scholar 

  19. Smialek JL, Jayne DT, Schaeffer JC, Murphy WH (1994) Thin Solid Films 253:285

    CAS  Google Scholar 

  20. Haynes JA, Pint BA, More KL et al (2002) Oxid Met 58:513

    CAS  Google Scholar 

  21. Cho J, Wang CM, Chan HM et al (1999) Acta Mater 47:4197

    CAS  Google Scholar 

  22. Yoshida H, Ikuhara Y, Sakuma T (2002) Acta Mater 50:2955

    CAS  Google Scholar 

  23. Veal BW, Paulikas AP, Gleeson B, Hou PY (2007) Surf Coat Technol 202:608

    CAS  Google Scholar 

  24. Tolpygo VK, Murphy KS, Clarke DR (2008) Acta Mater 56:489

    CAS  Google Scholar 

  25. Wu RT, Kawagishi K, Harada H, Reed RC (2008) Acta Mater 56:3622

    CAS  Google Scholar 

  26. Pint BA, Alexander KB (1998) J Electrochem Soc 145:1819

    CAS  Google Scholar 

  27. Zhang Y, Lee WY, Haynes JA et al (1999) Met Trans A 30A:2679

    CAS  Google Scholar 

  28. Zhang Y, Haynes JA, Pint BA, Wright IG (2005) Surf Coat Technol 200:1259

    CAS  Google Scholar 

  29. Gianuzzi LA, Stevie FA (1999) Micron 30(3):197

    Google Scholar 

  30. Golightly FA, Stott FH, Wood GC (1979) J Electrochem Soc 126:1035

    CAS  Google Scholar 

  31. Murphy KS, More KL, Lance MJ (2001) Surf Coat Technol 146–147:152

    Google Scholar 

  32. Braue W, Schulz U, Fritscher K et al (2005) Mater High Temp 22:393

    CAS  Google Scholar 

  33. Spitsberg I, More K (2006) Mater Sci Eng A417:322

    CAS  Google Scholar 

  34. Izumi T, Gleeson B (2006) Mater Sci Forum 522–523:221

    Google Scholar 

  35. Molins R, Hou PY (2006) Surf Coat Technol 201:3841

    CAS  Google Scholar 

  36. Bouhanek K, Adesanya OA, Stott FH et al (2001) Mater Sci Forum 369–372:615

    Google Scholar 

  37. Nicholls JR (2003) Mater Res Bull 28:659

    CAS  Google Scholar 

  38. Tawancy HM, Mohamed AI, Abbas NM et al (2003) J Mater Sci 38:3797. doi:https://doi.org/10.1023/A:1025992502450

    CAS  Google Scholar 

  39. Gleeson B (2006) J Prop Power 22:375

    CAS  Google Scholar 

  40. Haynes JA, Pint BA, Zhang Y, Wright IG (2008) Surf Coat Technol 203:413

    CAS  Google Scholar 

  41. Mendis BG, Tryon B, Pollock TM, Hemker KJ (2006) Surf Coat Technol 201:3918

    CAS  Google Scholar 

  42. Xu T, Faulhaber S, Mercer C et al (2004) Acta Mater 52:1439

    CAS  Google Scholar 

  43. Mendis BG, Livi KJT, Hemker KJ (2006) Scr Mater 55:589

    CAS  Google Scholar 

  44. Levi CG, Sommer E, Terry SG et al (2003) J Am Ceram Soc 86:676

    CAS  Google Scholar 

  45. Hu M, Guo S, Tomimatsu T et al (2006) Surf Coat Technol 200:6130

    CAS  Google Scholar 

  46. Pint BA, More KL, Wright IG, Tortorelli PF (2000) Mater High Temp 17:165

    CAS  Google Scholar 

  47. Pint BA, More KL, Wright IG (2003) Mater High Temp 20:375

    CAS  Google Scholar 

  48. Schumann E, Schnotz G, Trumble KP, Rühle M (2005) Acta Met Mater 53:3281

    Google Scholar 

  49. Pint BA, Haynes JA, More KL, Wright IG (2004) In: Green KA et al (eds) Superalloys 2004. TMS, Warrendale, PA, p 597

    Google Scholar 

  50. Wright IG, Pint BA (2005) J Power Energy Proc IMechE 219:101

    CAS  Google Scholar 

  51. Sigler DR (1989) Oxid Met 32:337

    CAS  Google Scholar 

  52. Smialek JL, Pint BA (2001) Mater Sci Forum 369–372:459

    Google Scholar 

  53. Homma T, Hindam HM, Pyun Y, Smeltzer WW (1982) Oxid Met 17:223

    CAS  Google Scholar 

  54. Doychak J, Smialek JL, Mitchell TE (1989) Met Trans 20A:499

    CAS  Google Scholar 

  55. Roux JP, Brumm MW, Grabke HJ (1993) Fresenius J Anal Chem 346:265

    CAS  Google Scholar 

  56. Pint BA, Haynes JA, More KL et al (2000) In: Pollack TM et al (eds) Superalloys 2000. TMS, Warrendale, PA, p 629

    Google Scholar 

  57. Pint BA, More KL, Wright IG (2003) Oxid Met 59:257

    CAS  Google Scholar 

  58. Pint BA, Schneibel JH (2005) Scr Mater 52:1199

    CAS  Google Scholar 

  59. Cotell CM (1988) Effects of yttrium on the oxidation mechanisms of pure chromium. MIT, Cambridge, MA

    Google Scholar 

  60. Przybylski K, Yurek GJ (1989) Mater Sci Forum 43:1

    CAS  Google Scholar 

  61. Li CW, Kingery WD (1984) In: Structure and properties of MgO and Al2O3 ceramics, advances in ceramics, vol 10. Am Ceram Soc, Columbus, OH, p.368

  62. Pint BA, Garratt-Reed AJ, Hobbs LW (2001) Oxid Met 56:119

    CAS  Google Scholar 

  63. Hiramatsu N, Stott FH (1999) Oxid Met 51:479

    CAS  Google Scholar 

  64. Pint BA, Garratt-Reed AJ, Hobbs LW (1998) J Am Ceram Soc 81:305

    CAS  Google Scholar 

  65. Naumenko D, Kochubey V, Niewolak L et al (2008) J Mater Sci 43:4550. doi:https://doi.org/10.1007/s10853-008-2639-5

    CAS  Google Scholar 

  66. Hou PY, Stringer J (1992) Oxid Met 38:323

    CAS  Google Scholar 

  67. Hou PY (2003) J Am Ceram Soc 86:660

    CAS  Google Scholar 

  68. Hou PY (2008) Annu Rev Mater Res 38:275

    CAS  Google Scholar 

  69. Ecer GM, Meier GH (1979) Oxid Met 13:159

    CAS  Google Scholar 

  70. Ramanarayanan TA, Raghavan M, Petkovic-Luton R (1984) J Electrochem Soc 131:923

    CAS  Google Scholar 

  71. Yurek GJ, Przybylski K, Garratt-Reed AJ (1987) J Electrochem Soc 134:2643

    CAS  Google Scholar 

  72. Pint BA (1994) Mater Res Bull 19(10):26

    CAS  Google Scholar 

  73. McLean D (1957) Grain boundaries in metals. Oxford University Press, London

    Google Scholar 

  74. Pint BA, Alexander KB, Monteiro OR, Brown IG (1998) In: Mishin Y et al (eds) Diffusion mechanisms in crystalline materials, Symp Proc, vol 527. MRS, Pittsburgh, PA, p 497

    Google Scholar 

  75. Doychak J (1994) In: Westbrook JH, Fleischer RL (eds) Intermetallic compounds, vol 1: principles. Wiley, New York, p 977

    Google Scholar 

  76. N’Gandu Muamba JM, Streiff R, Boone DH (1987) Mater Sci Eng 88:111

    Google Scholar 

  77. Pint BA (2003) In: Tortorelli P F et al (ed) Proc. John Stringer symposium on high temperature corrosion, ASM International, Materials Park, OH, p 9

  78. Pint BA (2003) J Am Ceram Soc 86:686

    CAS  Google Scholar 

  79. Naumenko D, Kochubey V, Le Coze J et al (2004) Mater Sci Forum 461–464:489

    Google Scholar 

  80. Li YZ, Wang CM, Chan HM et al (1999) J Am Ceram Soc 82:1497

    CAS  Google Scholar 

  81. Harris K, Wahl JB (2004) In: Green KA et al (eds) Superalloys 2004. TMS, Warrendale, PA, p 45

    Google Scholar 

  82. Kimmel J, Mutasim Z, Brentnall W (2000) J Eng Gas Turbines Power 122:393

    CAS  Google Scholar 

  83. Schulz U, Menzebach M, Leyens C, Yang YQ (2001) Surf Coat Technol 146–147:117

    Google Scholar 

  84. Toscano J, Vaßen R, Gil A et al (2006) Surf Coat Technol 201:3906

    CAS  Google Scholar 

  85. Quadakkers WJ, Huczkowski P, Naumenko D et al (2008) Mater Sci Forum 595–598:1111

    Google Scholar 

  86. Bouchet D, Lartigue-Korinek S, Molins R, Thibault J (2006) Phil Mag 86:1401

    CAS  Google Scholar 

  87. Milas I, Hinnemann B, Carter EA (2008) J Mater Res 23:1494

    CAS  Google Scholar 

  88. Schmalzried H, Laqua W, Lin PL (1979) Z Natur 34a:192

    CAS  Google Scholar 

  89. Petot-Ervas G, Petot C, Monceau D, Loudjani M (1992) Solid State Ionics 53–56:270

    Google Scholar 

  90. Kawada T, Watanabe T, Kaimai A et al (1998) Solid State Ionics 108:391

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Leyens, DLR, Köln, Germany for coating the FeCrAl substrate; K. Cooley, L. D. Chitwood, G. Garner, K. S. Reeves, J. L. Moser, H. Longmire, and D. Coffey at ORNL for assistance with the experimental work; I. G. Wright and M. P. Brady at ORNL; P. Y. Hou at LBL for manuscript comments. This research was sponsored by the U.S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy (R. Dennis—program manager) under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Pint.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pint, B.A., More, K.L. Characterization of alumina interfaces in TBC systems. J Mater Sci 44, 1676–1686 (2009). https://doi.org/10.1007/s10853-008-3221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-3221-x

Keywords

Navigation