[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Whiteness Constraints in a Unified Variational Framework for Image Restoration

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose a robust variational model for the restoration of images corrupted by blur and the general class of additive white noises. The key idea behind our proposal relies on a novel hard constraint imposed on the residual of the restoration, namely we characterize a residual whiteness set to which the restored image must belong. As the feasible set is unbounded, solution existence results for the proposed variational model are given. Moreover, based on theoretical derivations as well as on Monte Carlo simulations, we provide well-founded guidelines for setting the whiteness constraint limits. The solution of the non-trivial optimization problem, due to the non-smooth non-convex proposed model, is efficiently obtained by an alternating directions method of multipliers, which in particular reduces the solution to a sequence of convex optimization subproblems. Numerical results show the potentiality of the proposed model for restoring blurred images corrupted by several kinds of additive white noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Artina, M., Fornasier, M., Solombrino, F.: Linearly constrained non-smooth and non-convex minimization. SIAM J. Optim. 23(3), 1904–1937 (2013)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

    Article  MathSciNet  Google Scholar 

  3. Aubert, G., Aujol, J.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68, 925–946 (2008)

    Article  MathSciNet  Google Scholar 

  4. Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376 (2006)

    Article  Google Scholar 

  5. Babacan, S.D., Molina, R., Katsaggelos, A.K.: Parameter estimation in TV image restoration using variational distribution approximation. IEEE Trans. Image Process. 17(3), 326–339 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ben-Israel, A.: A concentrated cauchy distribution with finite moments. Ann. Oper. Res. 208(1), 147–153 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bouman, C., Sauer, K.: A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Process. 2(3), 296–310 (1993)

    Article  Google Scholar 

  8. Bovik, A.C.: Handbook of Image and Video Processing. Academic press, Cambridge (2010)

    MATH  Google Scholar 

  9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  10. Bredies, K., Dirk, A.L., Reiterer, S.: Minimization of non-smooth, non-convex functionals by iterative thresholding. J. Optim. Theory Appl. 165(1), 78–112 (2015)

    Article  MathSciNet  Google Scholar 

  11. Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting. Springer, Berlin (2002)

    Book  Google Scholar 

  12. Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM J. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  Google Scholar 

  13. Chan, T.F., Shen, J.J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, New Delhi (2005)

    Book  Google Scholar 

  14. Chan, R.H., Lanza, A., Morigi, S., Sgallari, F.: An adaptive strategy for the restoration of textured images using fractional order regularization. Numer. Math. Theory Methods Appl. 6(1), 276–296 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Chaux, C., Duval, L., Benazza-Benyahia, A., Pesquet, J.C.: A nonlinear stein-based estimator for multichannel image denoising. IEEE Trans. Signal Process. 56(8), 3855–3870 (2008)

    Article  MathSciNet  Google Scholar 

  16. Clason, C.: \(L^\infty \) fitting for inverse problems with uniform noise. Inverse Probl. 28(10), 104007 (2012)

    Article  MathSciNet  Google Scholar 

  17. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012)

    Article  MathSciNet  Google Scholar 

  18. Diananda, P.H., Bartlett, M.S.: Some probability limit theorems with statistical applications. Math. Proc. Camb. Philos. Soc. 49(2), 239–246 (1953). Cambridge University Press

    Article  MathSciNet  Google Scholar 

  19. Dominique, B., Vrscay, E. R., Zhou, W.: The use of residuals in image denoising. In: International conference image analysis and recognition. Springer, Berlin, Heidelberg (2009)

  20. Fehrenbach, J., Nikolova, M., Steidel, G., Weiss, P.: Bilevel image denoising using gaussianity tests. In: Proceedings of SSVM (2015)

  21. Geman, S., Geman, D.: Stochastic relaxation. Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  Google Scholar 

  22. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7(3), 1005–1028 (2009)

    Article  MathSciNet  Google Scholar 

  23. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms, p. 7. SIAM, New Delhi (2010)

    Book  Google Scholar 

  24. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT Numer. Math. 46(1), 41–59 (2006)

    Article  MathSciNet  Google Scholar 

  25. Hong, M., Luo, Z., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of non-convex problems. SIAM J. Optim. 26(1), 337–364 (2016)

    Article  MathSciNet  Google Scholar 

  26. http://www.caam.rice.edu/optimization/L1/ftvd/v4.0/

  27. Keren, D., Werman, M.: Probabilistic analysis of regularization. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 982–995 (1993)

    Article  Google Scholar 

  28. Lanza, A., Sciacchitano, F., Morigi, S., Sgallari, F.: A unified framework for the restoration of images corrupted by additive white noise. In: International conference on scale space and variational methods in computer vision, pp. 498–510. Springer, Cham (2017)

    Google Scholar 

  29. Lanza, A., Morigi, S., Sgallari, F., Wen, Y.W.: Image restoration with Poisson–Gaussian mixed noise. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2(1), 12–24 (2013)

    Article  Google Scholar 

  30. Lanza, A., Morigi, S., Sgallari, F., Yezzi, A.J.: Variational image denoising based on autocorrelation whiteness. SIAM J. Imaging Sci. 6(4), 1931–1955 (2013)

    Article  MathSciNet  Google Scholar 

  31. Lanza, A., Morigi, S., Sgallari, F.: Variational image restoration with constraints on noise whiteness. J. Math. Imaging Vis. 53(1), 61–77 (2015)

    Article  MathSciNet  Google Scholar 

  32. Lanza, A., Morigi, S., Sgallari, F.: Constrained \(\text{ TV }_p\)-\(\ell _2\) model for image restoration. J. Sci. Comput. 68(1), 64–91 (2016)

    Article  MathSciNet  Google Scholar 

  33. Lazzaro, D., Morigi, S., Melpignano, P., Loli Piccolomini, E., Benini, L.: Image enhancement variational methods for enabling strong cost reduction in OLED-based point-of-care immunofluorescent diagnostic systems. Int. J. Numer. Methods Biomed. Eng. 34(3), e2932 (2018). https://doi.org/10.1002/cnm.2932

    Article  MathSciNet  Google Scholar 

  34. Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)

    Article  MathSciNet  Google Scholar 

  35. Luisier, F., Blu, T., Unser, M.: Image denoising in mixed Poisson–Gaussian noise. IEEE Trans. Image Proc. 20(3), 696–708 (2011)

    Article  MathSciNet  Google Scholar 

  36. Mei, J.J., Dong, Y., Huang, T.Z., Yin, W.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. (2017). https://doi.org/10.1007/s10915-017-0460-5

    Article  MathSciNet  Google Scholar 

  37. Mkitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2011)

    Article  MathSciNet  Google Scholar 

  38. Neyman, J.: Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 236(767), 333–380 (1937)

    Article  Google Scholar 

  39. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  40. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  Google Scholar 

  41. Ochs, P., Dosovitskiy, A., Brox, T., Pock, T.: On iteratively reweighted algorithms for nonsmooth nonconvex optimization in computer vision. SIAM J. Imaging Sci. 8(1), 331–372 (2015)

    Article  MathSciNet  Google Scholar 

  42. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  43. Riot, P., Almansa, A., Gousseau, Y., Tupin, F.: A correlation-based dissimilarity measure for noisy patches. In: International conference on scale space and variational methods in computer vision, pp. 184–195. Springer, Cham (2017)

    Google Scholar 

  44. Romano, Y., Elad, M., MilanFar, P.: The little engine that could: regularization by denoising (RED). SIAM J. Imaging Sci. 10(4), 1808–1844 (2017)

    Article  MathSciNet  Google Scholar 

  45. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60(1–4), 259–268 (1992)

    Article  MathSciNet  Google Scholar 

  46. Rust, B.W., O’Leary, D.P.: Residual periodograms for choosing regularization parameters for ill-posed problems. Inverse Probl. 24(3), 034005 (2008)

    Article  MathSciNet  Google Scholar 

  47. Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging. Springer, New York (2010)

    Google Scholar 

  48. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with cauchy noise. SIAM J. Imaging Sci. 8(3), 1894–1922 (2015)

    Article  MathSciNet  Google Scholar 

  49. Wang, Y., Wotao, Y., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv:1511.06324 (2015)

  50. Wang, Y.Q., Morel, J.M.: SURE guided Gaussian mixture image denoising. SIAM J. Imaging Sci. 6(2), 999–1034 (2013)

    Article  MathSciNet  Google Scholar 

  51. Widrow, B., Kollr, I.: Quantization Noise: Roundoff Error in Digital Computation, Signal Processing, Control, and Communications, pp. 485–528. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  52. Wu, C., Zhang, J., Tai, X.C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5(1), 237–261 (2011)

    Article  MathSciNet  Google Scholar 

  53. Yang, L., Pong, T.K., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imaging Sci. 10(1), 74–110 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for comments that lead to improvements in the presentation. Research was supported in part by the National Group for Scientific Computation (GNCS-INDAM), Research Projects 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Morigi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 1

Proof

First, we notice that the whiteness set \(\mathcal {W}_{\alpha } \subset {{\mathbb {R}}}^{d^2}\) defined in (17)–(18) is given by the intersection of \( \big ( d^2 - 1 \big )\) different sets, namely

$$\begin{aligned} \mathcal {W}_{\alpha } \,\;{=}\; \bigcap _{[l,m] \in \overline{{\Theta }}_0} \, \mathcal {W}_{\alpha }^{(l,m)} \, , \end{aligned}$$
(58)

where \(\overline{{\Theta }}_0 \subset \mathbb {Z}^2\) is defined in (8) and

$$\begin{aligned} \mathcal {W}_{\alpha }^{(l,m)}= & {} \Big \{ u \in {{\mathbb {R}}}^{d^2} : \,\,\, -w_{\alpha } d^2 \nonumber \\&\le (Ku-g)^\mathrm{T} \,\, \overline{S}^{(l,m)} \, (Ku-g) \,\;{\le }\, +w_{\alpha } d^2 \Big \} \, . \end{aligned}$$
(59)

Any matrix \(\,\overline{S}^{(l,m)} \in {{\mathbb {R}}}^{d^2 \times d^2}\) in (59) is given by the symmetric part of the matrix \(\,S^{(l,m)} \in {{\mathbb {R}}}^{d^2 \times d^2}\) representing the 2D circular (lm)-shift operator, that is, the operator which circularly shifts the elements of a \(d \times d\) matrix of l rows and m columns. It is easy to verify that matrices \(\overline{S}^{(l,m)}\) are all indefinite; hence, the associated sets \(\mathcal {W}_{\alpha }^{(l,m)}\) in (59) are closed and can be non-convex. It clearly follows that the whiteness set \(\mathcal {W}_{\alpha }\) in (58) is closed (since intersection of closed sets) and can be non-convex.

According to Definition 5, in order to prove that \(\mathcal {W}_{\alpha }\) is unbounded it is sufficient to demonstrate that there exists an unbounded sequence \(\big \{u^{(k)}\big \} \subset \mathcal {W}_{\alpha }\). After recalling that the blur matrix K can be strongly ill-conditioned or even numerically singular but in purely mathematical sense it is invertible, we consider the following sequences:

$$\begin{aligned}&\big \{u^{(k)}\big \} := \big \{ K^{-1} \big ( g + s^{(k)} \big ) \big \} \, , \quad \nonumber \\&\big \{s^{(k)}\big \} := \big \{ \nu ^{(k)} e_m \big \} \, , \quad \big \{\nu ^{(k)}\big \} \subset {{\mathbb {R}}}\; \mathrm {unbounded}. \end{aligned}$$
(60)

Such sequences are unbounded, in fact

$$\begin{aligned} \lim _{k \rightarrow +\infty } \big \Vert u^{(k)} \big \Vert _2= & {} \lim _{k \rightarrow +\infty } \big \Vert K^{-1} \big ( g + s^{(k)} \big ) \big \Vert _2 \nonumber \\= & {} \lim _{k \rightarrow +\infty } \big \Vert K^{-1} g + \nu ^{(k)} K^{-1} e_m \big \} \big \Vert _2 \nonumber \\= & {} \lim _{k \rightarrow +\infty } \left\| \nu ^{(k)} \left( \frac{1}{\nu ^{(k)}} \, K^{-1} g \;{+}\; K^{-1} e_m \right) \right\| _2 \nonumber \\= & {} \lim _{k \rightarrow +\infty } \left( \big | \nu ^{(k)} \big | \, \big \Vert K^{-1} e_m \big \Vert _2 \right) \nonumber \\= & {} \big \Vert K^{-1} e_m \big \Vert _2 \, \lim _{k \rightarrow +\infty } \big | \nu ^{(k)} \big | \, = \, + \infty . \nonumber \\ \, \end{aligned}$$
(61)

To prove that the unbounded sequences in (60) belong to the whiteness set in (17)–(18), we derive the expression of \(r_{Ku^{(k)}-g}\), that is the sample autocorrelation of the residue image associated with the generic term of the sequences:

$$\begin{aligned} r_{Ku^{(k)}-g}= & {} \frac{1}{d^2} \, \big ( Ku^{(k)}-g \big ) \,{\star }\, \big ( Ku^{(k)}-g \big ) \;{=}\; \frac{1}{d^2} \, s^{(k)} \,{\star }\, s^{(k)} \\= & {} \frac{1}{d^2} \, \big ( \nu ^{(k)} e_m \big ) \,{\star }\, \big ( \nu ^{(k)} e_m \big ) \;{=}\; \frac{\big ( \nu ^{(k)} \big )^2}{d^2} \, e_m \,{\star }\, e_m \\= & {} \frac{\big ( \nu ^{(k)} \big )^2}{d^2} \,\, \mathrm {mat}(e_1) \, , \end{aligned}$$

that is,

$$\begin{aligned} r_{Ku^{(k)}-g}[l,m] \; = \left\{ \begin{array}{ll} \big ( \nu ^{(k)} \big )^2 / d^2 &{} \;\;\mathrm {for} \;\; [l,m] = [0,0] \\ 0 &{} \;\;\mathrm {for} \;\; [l,m] \in \, \overline{{\Theta }}_0 \end{array} \right. \quad \forall \, k \in \mathbb {N} \, . \end{aligned}$$
(62)

It follows from (61), (62) and (17)–(18) that any sequence \(\big \{u^{(k)}\big \}\) defined as in (60) is unbounded and belongs to the whiteness set \(\mathcal {W}_{\alpha }\) for any real \(\alpha \ge 0\). This implies that \(\mathcal {W}_{\alpha }\) is unbounded.

Finally, in order to demonstrate that \(\mathcal {W}_{\alpha }\) in (17)–(18) is non-convex, it is sufficient to prove that, for any given real \(\alpha \ge 0\), there always exist two images \(u_{\alpha }, v_{\alpha } \in {{\mathbb {R}}}^{d^2}\) belonging to \(\mathcal {W}_{\alpha }\) and a scalar \(\gamma \in (0,1)\) such that the image \(z_{\alpha } := \gamma \, u_{\alpha } + (1-\gamma ) \, v_{\alpha }\) does not belong to \(\mathcal {W}_{\alpha }\). By taking

$$\begin{aligned} \left\{ \, \begin{array}{ll} u_{\alpha } &{}\;{:=}\; K^{-1} \big (\, g + 2 \, d \, \sqrt{\rho _{\alpha }} \,\, e_p \big ) \\ v_{\alpha } &{}\;{:=}\; K^{-1} \big (\, g + 2 \, d \, \sqrt{\rho _{\alpha }} \,\, e_q \big ) \end{array} \right. \quad \mathrm {with}\;\;\; \nonumber \\ p,q \in \{1,\ldots ,d^2\}, \; p \ne q, \quad \rho _{\alpha } > w_{\alpha }, \end{aligned}$$
(63)

and, according to the choice \(\gamma = 1/2\),

$$\begin{aligned} z_{\alpha } \;{:=}\; \frac{1}{2} \, u_{\alpha } + \frac{1}{2} \, v_{\alpha } = K^{-1} \left( g + d \, \sqrt{\rho _{\alpha }} \,\, \left( e_p + e_q \right) \right) , \end{aligned}$$
(64)

we have

$$\begin{aligned} r_{K u_{\alpha } - g}[l,m] \;{=}\; r_{K v_{\alpha } - g}[l,m] \;{=}\; 0 \;\; \forall \, (l,m) \in \, \overline{{\Theta }}_0 \end{aligned}$$
(65)

and

$$\begin{aligned}&r_{K z_{\alpha }-g}[l,m] \nonumber \\&\quad = \frac{1}{d^2} \, \left( \big ( K z_{\alpha }-g \big ) \,{\star }\, \big ( K z_{\alpha }-g \big ) \right) [l,m] \nonumber \\&\quad = \frac{1}{d^2} \, \left( \left( d \, \sqrt{\rho _{\alpha }} \left( e_p + e_q \right) \right) \,{\star }\, \left( d \, \sqrt{\rho _{\alpha }} \left( e_p + e_q \right) \right) \right) [l,m] \nonumber \\&\quad = \rho _{\alpha } \, \left( \left( e_p + e_q \right) \,{\star }\, \left( e_p + e_q \right) \right) [l,m] \nonumber \\&\quad = \rho _{\alpha } \, \left( e_p \,{\star }\;\, e_p + e_q \,{\star }\;\, e_q + e_p \,{\star }\;\, e_q + e_q \,{\star }\;\, e_p \right) [l,m] \nonumber \\&\quad = \rho _{\alpha } \, \big ( \mathrm {mat}(e_1) + \mathrm {mat}(e_1) + e_p \,{\star }\;\, e_q + e_q \,{\star }\;\, e_p \big )[l,m]\nonumber \\&\quad = \left\{ \begin{array}{ll} 2 \, \rho _{\alpha } &{} \;\,\mathrm {for} \;\; [l,m] = [0,0] \\ \rho _{\alpha } &{} \;\,\mathrm {for} \;\; [l,m] \in \left\{ [\bar{l},\bar{m}],[-\bar{l},-\bar{m}]\right\} \\ &{}\quad \quad \;\,\mathrm {for}\;\,\mathrm {some}\;[\bar{l},\bar{m}] \,{\ne }\, [0,0] \\ 0 &{} \;\,\mathrm {otherwise} \end{array} \right. . \end{aligned}$$
(66)

Since \(\rho _{\alpha } > w_{\alpha }\) by assumption, \(z_{\alpha }\) does not belong to \(\mathcal {W}_{\alpha }\), and the proof is completed. \(\square \)

1.2 Proof of Lemma 2

Proof

The fact that the discrete TV semi-norm function is proper, continuous, convex and bounded from below by zero is well known and immediate to verify. It is also well known that the TV function is not coercive over its entire domain \({{\mathbb {R}}}^{d^2}\). To prove that the TV function is coercive over the unbounded whiteness set \(\mathcal {W}_{\alpha } \subset {{\mathbb {R}}}^{d^2}\) defined in (17)–(18), first we outline the set of all the unbounded sequences \(\big \{u^{(k)}\big \} \subset {{\mathbb {R}}}^{d^2}\) for which the TV function is not coercive, that is for which \(\displaystyle {\lim _{k \rightarrow \infty }} \mathrm {TV}\big (u^{(k)}\big ) < +\infty \), then we demonstrate that such sequences are not contained into \(\mathcal {W}_{\alpha }\).

Let us define the matrix \(D := (D_h^T,D_v^T)^\mathrm{T} \in {{\mathbb {R}}}^{2d^2 \times d^2}\) with \(D_h,D_v \in {{\mathbb {R}}}^{d^2}\) the coefficient matrices of linear finite difference operators approximating the horizontal and vertical partial derivatives of image u, respectively. Then, the TV semi-norm of u defined in (2) can be regarded as the composition of a linear map \(\mathcal {D}: {{\mathbb {R}}}^{d^2} \rightarrow {{\mathbb {R}}}^{2d^2}\) with coefficient matrix D and a suitable nonlinear function \(\mathcal {G}: {{\mathbb {R}}}^{2d^2} \rightarrow {{\mathbb {R}}}\), that is

$$\begin{aligned} \mathrm {TV}(u)= & {} \mathcal {G}(\mathcal {D}(u)) \, , \quad \quad \mathcal {D}(u) \,:=\, Du, \nonumber \\ \mathcal {G}(v):= & {} \sum _{i=1}^{d^2} \left\| \left( v_i,v_{i+d^2} \right) \right\| _2 \, . \end{aligned}$$
(67)

We now study coerciveness of the function \(\mathcal {G}\) above. As it is immediate to verify that

$$\begin{aligned} \mathcal {G}(v)= & {} \sum _{i=1}^{d^2} \left\| \left( v_i,v_{i+d^2} \right) \right\| _2 \;{\ge }\;\, \big \Vert \left( v_1,v_2,\ldots ,v_{2d^2} \right) \big \Vert _2 \nonumber \\= & {} \Vert v \Vert _2 \, , \end{aligned}$$
(68)

for any unbounded sequence \(\big \{v^{(k)}\big \} \subseteq {{\mathbb {R}}}^{2d^2}\)—that is, according to Definition 4, any sequence satisfying \(\big \Vert v^{(k)} \big \Vert _2 \xrightarrow {k \rightarrow \infty } +\infty \)—we have that

$$\begin{aligned}&\lim _{\left\| v^{(k)} \right\| _2 \xrightarrow {k \rightarrow \infty } +\infty } \mathcal {G}\big (v^{(k)}\big ) \nonumber \\&\quad \ge \lim _{\left\| v^{(k)} \right\| _2 \xrightarrow {k \rightarrow \infty } +\infty } \big \Vert v^{(k)} \big \Vert _2 \;{=}\; +\infty \, , \end{aligned}$$
(69)

that is the function \(\mathcal {G}\) is coercive over its entire domain \({{\mathbb {R}}}^{2d^2}\).

For what concerns the linear operator \(\mathcal {D}\), clearly the kernel of the coefficient matrix D has dimension 1 and is given by

$$\begin{aligned} \mathrm {ker}(D) \;{=}\; \left\{ u \in {{\mathbb {R}}}^{d^2}: \; u = \nu \, {\mathbb {1}}, \;\, \nu \in {{\mathbb {R}}}\, \right\} \, . \end{aligned}$$
(70)

Since for any vector \(u \in {{\mathbb {R}}}^{d^2}\) there always exists only one pair of vectors \(u_1 \in \mathrm {ker}(D)\), \(u_2 \in (\mathrm {ker}(D))^{\perp }\) such that \(u = u_1 + u_2\), then any unbounded sequence \(\big \{u^{(k)}\big \} \subseteq {{\mathbb {R}}}^{d^2}\) can be additively split as follows

$$\begin{aligned} \big \{u^{(k)}\big \}= & {} \big \{u_1^{(k)}\big \} + \big \{u_2^{(k)}\big \}, \quad \big \{u_1^{(k)}\big \} \subseteq \mathrm {ker}(D), \nonumber \\ \big \{u_2^{(k)}\big \}\subseteq & {} \left( \mathrm {ker}(D)\right) ^{\perp } \, , \end{aligned}$$
(71)

where either \(\big \{u_1^{(k)}\big \}\) or \(\big \{u_2^{(k)}\big \}\) is unbounded. In case that \(\big \{u_2^{(k)}\big \}\) is unbounded, then clearly \(\big \{D u_2^{(k)}\big \}\) is also unbounded and, due to coerciveness of the function \(\mathcal {G}\), \(\mathrm {TV}\big ( u_2^{(k)} \big ) = \mathcal {G}\big (D u_2^{(k)}\big )\) tends to \(\infty \). On the other hand, any unbounded \(\big \{u_1^{(k)}\big \}\) is mapped by D into a null (bounded) sequence. It follows that all the unbounded sequences for which the TV function is not coercive are of the form

$$\begin{aligned} \big \{u^{(k)}\big \} \;{=}\; \big \{ u_2^{(k)} \;{+}\; \nu ^{(k)} \, {\mathbb {1}} \big \} \, , \end{aligned}$$
(72)

with \(\big \{u_2^{(k)}\big \} \subset {{\mathbb {R}}}^{d^2}\) any bounded sequence and \(\big \{\nu ^{(k)}\big \} \subset {{\mathbb {R}}}\) any (scalar) unbounded sequence.

We now prove that no unbounded sequence of the form (72) belongs to the whiteness set \(\mathcal {W}_{\alpha }\) in (17)–(18), for any real \(\alpha \ge 0\). According to Definition (18) of the residual sample autocorrelation, we have:

$$\begin{aligned} r_{Ku^{(k)}-g}= & {} \frac{1}{d^2} \, \big ( Ku^{(k)}-g \big ) \,{\star }\, \big ( Ku^{(k)}-g \big ) \nonumber \\= & {} \frac{1}{d^2} \, \Big ( K \big ( u_1^{(k)} \;{+}\; \nu ^{(k)} \, {\mathbb {1}} \big ) - g \Big ) \,{\star }\, \Big ( K \big ( u_1^{(k)}\nonumber \\&+\, \nu ^{(k)} \, {\mathbb {1}} \big ) - g \Big ) \nonumber \\= & {} \frac{1}{d^2} \, \big ( \nu ^{(k)} K {\mathbb {1}} + K u_1^{(k)} - g \big ) \,{\star }\, \big ( \nu ^{(k)} K {\mathbb {1}} \nonumber \\&+\, K u_1^{(k)} - g \big ) \, . \end{aligned}$$
(73)

Since the blur PSF is typically energy-preserving, which implies that the sum of the elements of each row of the blur matrix K is equal to one, then \(K {\mathbb {1}} = {\mathbb {1}}\). Moreover, since K is bounded, the sequence \(c^{(k)} := K u_1^{(k)} - g\) is bounded. From (73), we have

$$\begin{aligned}&r_{Ku^{(k)}-g}[l,m] \nonumber \\&\quad = \frac{1}{d^2} \, \Big ( \big ( \nu ^{(k)} {\mathbb {1}} + c^{(k)} \big ) \,{\star }\, \big ( \nu ^{(k)} {\mathbb {1}} + c^{(k)} \big ) \Big )[l,m] \nonumber \\&\quad = \frac{1}{d^2} \left( \big (\nu ^{(k)}\big )^2 \, {\mathbb {1}} \,{\star }\, {\mathbb {1}} + \nu ^{(k)} \, {\mathbb {1}} \,{\star }\, c^{(k)} + \nu ^{(k)} \, c^{(k)} \,{\star }\, {\mathbb {1}}\right. \nonumber \\&\qquad \left. +\, c^{(k)} \,{\star }\; c^{(k)} \right) [l,m] \nonumber \\&\quad = \frac{1}{d^2} \left( \big (\nu ^{(k)}\big )^2 d^2 \, \mathrm {mat}({\mathbb {1}}) \,+ 2 \, \nu ^{(k)} \left( \sum _{i=1}^{d^2} c^{(k)}_i \right) \mathrm {mat}({\mathbb {1}}) \right. \nonumber \\&\qquad \left. +\, c^{(k)} \,{\star }\, c^{(k)} \right) [l,m] \nonumber \\&\quad = \frac{1}{d^2} \left( \big (\nu ^{(k)}\big )^2 d^2 \,+ 2 \, \nu ^{(k)} \left( \sum _{i=1}^{d^2} c^{(k)}_i \right) + \left( c^{(k)} \,{\star }\, c^{(k)} \right) [l,m] \right) \nonumber \\&\quad = \big (\nu ^{(k)}\big )^{2} \left( 1 \,{+}\, \frac{2}{d^2 \nu ^{(k)}} \left( \sum _{i=1}^{d^2} c^{(k)}_i \right) +\, \frac{\left( c^{(k)} \,{\star }\, c^{(k)} \right) [l,m]}{d^2 \big (\nu ^{(k)}\big )^2} \right) . \end{aligned}$$
(74)

As the sequence \(c^{(k)} \subset {{\mathbb {R}}}^{d^2}\) is bounded and the sequence \(\nu ^{(k)} \subset {{\mathbb {R}}}\) is unbounded, the second and third terms within parentheses in (74) both represent bounded sequences in \({{\mathbb {R}}}\) (more precisely, they both tend to zero as k approaches \(+\infty \)). Hence, we have that

$$\begin{aligned} \lim _{k \rightarrow +\infty } r_{Ku^{(k)}-g}[l,m]= & {} \lim _{k \rightarrow +\infty } \big (\nu ^{(k)}\big )^2 \nonumber \\= & {} + \infty \quad \forall \, [l,m] \in \, \overline{{\Theta }}_0 . \end{aligned}$$
(75)

It thus follows from (75) that unbounded sequences of the form (72) do not belong to the whiteness set \(\mathcal {W}_{\alpha }\) in (17) for any real \(\alpha \ge 0\), at least for k greater than a certain value. This implies coercivity of the TV function over \(\mathcal {W}_{\alpha }\) and concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanza, A., Morigi, S., Sciacchitano, F. et al. Whiteness Constraints in a Unified Variational Framework for Image Restoration. J Math Imaging Vis 60, 1503–1526 (2018). https://doi.org/10.1007/s10851-018-0845-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0845-6

Keywords

Navigation