[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Obstacles Avoidance Based on Switching Potential Functions

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel path planning and obstacles avoidance method for a mobile robot is proposed. This method makes use of a switching strategy between the attractive potential of the target and a new helicoidal potential field which allows to bypass an obstacle by driving the robot around it. The new technique aims at overcoming the local minima problems of the well-known artificial potentials method, caused by the summation of two (or more) potential fields. In fact, in the proposed approach, only a single potential is used at a time. The resulting proposed technique uses only local information and ensures high robustness, in terms of achieved performance and computational complexity, w.r.t. the number of obstacles. Numerical simulations, together with comparisons with existing methods, confirm a very robust behavior of the method, also in the case of a framework with multiple obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, Available on-line 26 August 2016, ISSN 0921-8890. https://doi.org/10.1016/j.robot.2016.08.001

  2. Chu, K., Lee, M., Sunwoo, M.: Local path planning for Off-Road autonomous driving with avoidance of static obstacles. IEEE Trans. Intell. Transp. Syst. 13(4), 1599–1616 (2012)

    Article  Google Scholar 

  3. Zhang, H., Butzke, J., Likhachev, M.: Combining global and local planning with guarantees on completeness. In: IEEE International Conference on Robotics and Automation (ICRA), St. Paul, Minnesota, USA, pp 4500–4506 (2012)

  4. Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: modelling, planning and control. Springer Publishing Company Incorporated, Berlin (2008)

    Google Scholar 

  5. Dang, A.D., Horn, J.: Formation control of autonomous robots following desired formation during tracking a moving target. In: IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, pp 160–165 (2015)

  6. Dang, A.D., La, H.M., Horn, J.: Distributed formation control for autonomous robots following desired shapes in noisy environment. In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany, pp 285–290 (2016)

  7. Al-Sultan, K.S., Aliyu, M.D.S.: A new potential field-based algorithm for path planning. J. Intell. Robot. Syst. 17(3), 265–282 (1996)

    Article  Google Scholar 

  8. Rosell, J., Iniguez, P.: Path planning using harmonic functions and probabilistic cell decomposition. In: International Conference on Robotics and Automation (ICRA), Barcelona, Spain, pp 1803–1808 (2005)

  9. Seda, M.: Roadmap method vs. cell decomposition in robot motion planning. In: International Conference on Signal Processing, Robotics and Automation (WSEAS), Corfu Island, Greece, pp 127–132 (2007)

  10. Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of robot Motion-Theory, algorithms, and implementation. The MIT press, Cambridge (2005)

    MATH  Google Scholar 

  11. Bopardikar, S.D., Englot, B., Speranzon, A.: Multiobjective path planning: localization constraints and collision probability. IEEE Trans. Robot. 31(3), 562–577 (2015)

    Article  Google Scholar 

  12. Franzé, G., Lucia, W.: The obstacle avoidance motion planning problem for autonomous vehicles: a low-demanding receding horizon control scheme. Syst. Control Lett. 77, 1–10 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lau, B., Sprunk, C., Burgard, W.: Efficient grid-based spatial representations for robot navigation in dynamic environments. Robot. Auton. Syst. 61(10), 1116–1130 (2013)

    Article  Google Scholar 

  14. Chamberland, S., Beaudry, E., Clavien, L., Kabanza, F., Michaud, F., Lauriay, M.: Motion planning for an omnidirectional robot with steering constraints. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Taipei, Taiwan, pp 4305–4310 (2010)

  15. Kowalczyk, W., Przybyla, M., Kozlowski, K.: Set-point control of mobile robot with obstacle detection and avoidance using navigation function - experimental verification. J. Intell. Robot. Syst. 85(3–4), 1–14 (2016)

    Google Scholar 

  16. Yang, S.X., Meng, M.: An efficient neural network approach to dynamic robot motion planning. Neural Netw. 13(2), 143–148 (2000)

    Article  Google Scholar 

  17. Chen, X., Li, Y.: Smooth formation navigation of multiple mobile robots for avoiding moving obstacles. Int. J. Control. Autom. Syst. 4(4), 466–479 (2006)

    Google Scholar 

  18. Arajo, R.: Prune-Able Fuzzy ART neural architecture for robot map learning and navigation in dynamic environments. IEEE Trans. Neural Netw. 17(5), 1235–1249 (2006)

    Article  Google Scholar 

  19. Hui, N.B., Mahendar, V., Pratihar, D.K.: Time-optimal, collision-free navigation of a car-like mobile robot using neuron-fuzzy approaches. Fuzzy Set. Syst. 157(16), 2171–2204 (2006)

    Article  MATH  Google Scholar 

  20. Alajlan, M., Koubaa, A., Chaari, I., Bennaceur, H., Ammar, A.: Global path planning for mobile robots in large-scale grid environments using genetic algorithms. In: IEEE International Conference on Individual and Collective Behaviors in Robotics (ICBR), Sousse, Tunisia, pp 1–8 (2013)

  21. Karami, A.H., Hasanzadeh, M.: An adaptive genetic algorithm for robot motion planning in 2D complex environments. Comput. Electr. Eng. 43, 317–329 (2015)

    Article  Google Scholar 

  22. Yang, C., Simon, D.: A new particle swarm optimization technique. In: IEEE International Conference on Systems Engineering (ICSEng), Las Vegas, NV, USA, pp 164–169 (2005)

  23. Couceiro, M.S., Machado, J.A.T., Rocha, R.P., Ferreira, N.M.F.: A fuzzified systematic adjustment of the robotic Darwinian PSO. Robot. Auton. Syst. 60(12), 1625–1639 (2012)

    Article  Google Scholar 

  24. Franzé, G., Lucia, W.: A receding horizon control strategy for autonomous vehicles in dynamic environments. IEEE Trans. Control Syst. Technol. 24(2), 695–702 (2016)

    Article  Google Scholar 

  25. Benzerrouk, A., Adouane, L., Martinet, P.: Dynamic obstacle avoidance strategies using limit cycle for the navigation of multi-robot system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 4th Workshop on Planning Perception and Navigation for Intelligent Vehicles, Vilamoura, Algarve, Portugal (2012)

  26. Kim, D., Kim, J.: A real-time limit-cycle navigation method for fast mobile robots and its application to robot soccer. Robot. Auton. Syst. 42(1), 17–30 (2003)

    Article  MATH  Google Scholar 

  27. Tsoularis, A., Kambhampati, C.: On-line planning for collision avoidance on the nominal path. J. Intell. Robot. Syst. 21(4), 327–371 (1998)

    Article  MATH  Google Scholar 

  28. Belkhous, S., Azzouz, A., Saad, M., Nerguizian, C., Nerguizian, V.: A novel approach for mobile robot navigation with dynamic obstacles avoidance. J. Intell. Robot. Syst. 44(3), 187–201 (2005)

    Article  Google Scholar 

  29. Park, M.G., Lee, M.C.: A new technique to escape local minimum in artificial potential field based path planning. KSME Int. J. 17(12), 1876–1885 (2003)

    Article  Google Scholar 

  30. Struik, D.J.: Lectures on classical differential geometry. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  31. Stifter, S., Lenarcic, J.: Advances in robot kinematics, pp 227–235. Springer, Wien (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Fedele.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedele, G., D’Alfonso, L., Chiaravalloti, F. et al. Obstacles Avoidance Based on Switching Potential Functions. J Intell Robot Syst 90, 387–405 (2018). https://doi.org/10.1007/s10846-017-0687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-017-0687-2

Keywords

Navigation