[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Interpolation Based Controller for Trajectory Tracking in Mobile Robots

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

In this work, a novel algorithm for trajectory tracking in mobile robots is presented. For the purpose of tracking trajectory, a methodology based on the interpolation of trigonometric functions of the wheeled mobile robot kinematics is proposed. In addition, the convergence of the interpolation-based control systems is analysed. Furthermore, the optimal controller parameters are selected through Monte Carlo Experiments (MCE) in order to minimize a cost index. The MCE is able to find, the best set of gains that minimizes the tracking error. Experimental results over a mobile robot Pionner 3AT are conclusive and satisfactory. In addition, a comparative study of control performance is carried out against another controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abdessemed, F., Benmahammed, K., Monacelli, E.: A fuzzy-based reactive controller for a non-holonomic mobile robot. Robot. Auton. Syst. 47(1), 31–46 (2004)

    Article  Google Scholar 

  2. Barat, A., Ruskin, H.J., Crane, M.: Probabilistic models for drug dissolution. part 1. review of monte carlo and stochastic cellular automata approaches. Simul. Model. Pract. Theory 14(7), 843–856 (2006). doi:10.1016/j.simpat.2006.01.004

  3. Batavia, P.H., Roth, S.A., Singh, S.: Autonomous coverage operations in semi-structured outdoor environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 743–749. IEEE (2002)

  4. Cheein, F.A., Scaglia, G.: Trajectory tracking controller design for unmanned vehicles: a new methodology. J. Field Rob. 31(6), 861–887 (2014)

    Article  Google Scholar 

  5. Chwa, D.: Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances. IEEE Trans. Fuzzy Syst. 20(3), 587–593 (2012)

    Article  Google Scholar 

  6. Das, T., Kar, I.N.: Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Control Syst. Technol. 14(3), 501–510 (2006)

    Article  Google Scholar 

  7. Do, K., Pan, J.: Global output-feedback path tracking of unicycle-type mobile robots. Robot. Comput. Integr. Manuf. 22(2), 166–179 (2006)

    Article  Google Scholar 

  8. Do, K.D.: Bounded controllers for global path tracking control of unicycle-type mobile robots. Robot. Auton. Syst. 61(8), 775–784 (2013)

    Article  Google Scholar 

  9. Gokkus, L., Erkmen, A.M., Tekinalp, O.: Interacting fuzzy multimodel intelligent tracking system for swift target manoeuvres. In: Proceedings of the 1997 IEEE/RSJ International Conference On Intelligent Robots and Systems, 1997. IROS’97, vol. 2, pp. 766–771. IEEE (1997)

  10. Guldner, J., Utkin, V., et al.: Sliding mode control for gradient tracking and robot navigation using artificial potential fields. IEEE Trans. Robot. Autom. 11(2), 247–254 (1995)

    Article  Google Scholar 

  11. Jung, I.K., Hong, K.B., Hong, S.K., Hong, S.C.: Path planning of mobile robot using neural network. In: Proceedings of the IEEE International Symposium On Industrial Electronics, 1999. ISIE’99, vol. 3, pp. 979–983. IEEE (1999)

  12. Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T.: A stable tracking control method for an autonomous mobile robot. In: IEEE International Conference On Robotics and Automation, 1990. Proceedings., 1990, pp. 384–389. IEEE (1990)

  13. Lee, T., Lam, H., Leung, F.H., Tam, P.K.: A practical fuzzy logic controller for the path tracking of wheeled mobile robots. IEEE Control. Syst. 23(2), 60–65 (2003)

    Article  Google Scholar 

  14. Li, T.H.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

    Article  Google Scholar 

  15. Luo, B., Ding, Y., Hao, K., Liu, J.: Research on mobile robot path tracking based on color vision. In: Chinese Automation Congress (CAC), 2015, pp. 371–375. IEEE (2015)

  16. Luo, R.C., Chen, T.M.: Autonomous mobile target tracking system based on grey-fuzzy control algorithm. IEEE Trans. Ind. Electron. 47(4), 920–931 (2000)

    Article  Google Scholar 

  17. Maalouf, E., Saad, M., Saliah, H.: A higher level path tracking controller for a four-wheel differentially steered mobile robot. Robot. Auton. Syst. 54(1), 23–33 (2006)

    Article  Google Scholar 

  18. Maeda, Y., Tanabe, M., Takagi, T.: Behavior-decision fuzzy algorithm for autonomous mobile robots. Inform. Sci. 71(1), 145–168 (1993)

    Article  Google Scholar 

  19. Martínez, R., Castillo, O., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. Inform. Sci. 179(13), 2158–2174 (2009)

    Article  MATH  Google Scholar 

  20. Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., Bastos-Filho, T.F.: An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control. Eng. Pract. 16(11), 1354–1363 (2008)

    Article  Google Scholar 

  21. Michałek, M., Kozłowski, K.: Feedback control framework for car-like robots using the unicycle controllers. Robotica 30(04), 517–535 (2012)

    Article  Google Scholar 

  22. Narendra, K.S., Han, Z.: The changing face of adaptive control: the use of multiple models. Annu. Rev. Control. 35(1), 1–12 (2011)

    Article  Google Scholar 

  23. Normey-Rico, J.E., Alcala, I., Gómez-Ortega, J., Camacho, E.F.: Mobile robot path tracking using a robust pid controller. Control. Eng. Pract. 9(11), 1209–1214 (2001)

    Article  Google Scholar 

  24. Normey-Rico, J.E., Gmez-Ortega, J., Camacho, E.F.: A smith-predictor-based generalised predictive controller for mobile robot path-tracking. Control. Eng. Pract. 7(6), 729–740 (1999)

    Article  Google Scholar 

  25. Onat, A., Ozkan, M.: A combined direct and indirect adaptive control scheme for a wheeled mobile robot using multiple models. In: Informatics in Control, Automation and Robotics, pp. 167–182. Springer (2014)

  26. Onat, A., Ozkan, M.: Dynamic adaptive trajectory tracking control of nonholonomic mobile robots using multiple models approach. Adv. Robot. (ahead-of-print), 1–17 (2015)

  27. Ou, M., Li, S., Wang, C.: Finite-time tracking control for nonholonomic mobile robots based on visual servoing. Asian J. Control 16(3), 679–691 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Resende, C.Z., Carelli, R., Sarcinelli-Filho, M.: A nonlinear trajectory tracking controller for mobile robots with velocity limitation via fuzzy gains. Control. Eng. Pract. 21(10), 1302–1309 (2013)

    Article  Google Scholar 

  29. Rosales, A., Scaglia, G., Mut, V., Di Sciascio, F.: Formation control and trajectory tracking of mobile robotic systems - a linear algebra approach. Robotica 29(3), 335–349 (2011). Cited By (since 1996):3 Export Date: 18 November 2013 Source: Scopus

  30. Scaglia, G., Montoya, L.Q., Mut, V., di Sciascio, F.: Numerical methods based controller design for mobile robots. Robotica 27(2), 269–279 (2009)

    Article  Google Scholar 

  31. Serrano, M.E., Scaglia, G.J.E., Cheein, F.A., Mut, V., Ortiz, O.A.: Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots. Robotica 33(10), 2186–2203 (2015)

    Article  Google Scholar 

  32. Shi-Cai, L., Da-Long, T., Guang-Jun, L.: Formation control of mobile robots with active obstacle avoidance. Acta Automat. Sin. 33(5), 529–535 (2007)

    Article  Google Scholar 

  33. Skubic, M., Graves, S., Mollenhauer, J.: Design of a two-level fuzzy controller for a reactive miniature mobile robot. In: Third International Conference On Industrial Fuzzy Control and Intelligent Systems, 1993., IFIS’93, pp. 224–227. IEEE (1993)

  34. Strang, G., Press, W.C.: Introduction to Linear Algebra, vol. 3. Wellesley-Cambridge Press Wellesley, MA (1993)

  35. Tempo, R., Ishii, H.: Monte carlo and las vegas randomized algorithms for systems and control*: An introduction. Eur. J. Control. 13(2–3), 189–203 (2007). doi:10.3166/ejc.13.189-203

  36. Tian-Tian, Y., Zhi-Yuan, L., Hong, C., Run, P.: Formation control and obstacle avoidance for multiple mobile robots. Acta Automat. Sin. 34(5), 588–593 (2008)

    Article  MathSciNet  Google Scholar 

  37. Toibero, J.M., Carelli, R., Kuchen, B.: Switching control of mobile robots for autonomous navigation in unknown environments. In: 2007 IEEE International Conference On Robotics and Automation, pp. 1974–1979 (2007)

  38. Toibero, J.M., Roberti, F., Carelli, R.: Stable contour-following control of wheeled mobile robots. Robotica 27(1), 1–12 (2009)

    Article  Google Scholar 

  39. Tong, W., Li, T.H.S.: Realization of two-dimensional target tracking problem via autonomous mobile robots using fuzzy sliding mode control. In: Proceedings of the 24Th Annual Conference of the IEEE Industrial Electronics Society, 1998. IECON’98, vol. 2, pp. 1158–1163. IEEE (1998)

  40. Wu, Y., Wang, B., Zong, G.: Finite-time tracking controller design for nonholonomic systems with extended chained form. IEEE Trans. Circuits Syst. Express Briefs 52(11), 798–802 (2005)

    Article  Google Scholar 

  41. Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 34(5), 281–287 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  42. Xin, L., Wang, Q., She, J., Li, Y.: Robust adaptive tracking control of wheeled mobile robot. Robot. Auton. Syst. 78, 36–48 (2016)

  43. Yang, S.X., Zhu, A., Yuan, G., Meng, M.Q.H.: A bioinspired neurodynamics-based approach to tracking control of mobile robots. IEEE Trans. Ind. Electron. 59(8), 3211–3220 (2012)

    Article  Google Scholar 

  44. Zhang, Y., Liu, G., Luo, B.: Finite-time cascaded tracking control approach for mobile robots. Inform. Sci. 284, 31–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario E. Serrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, M.E., Godoy, S.A., Quintero, L. et al. Interpolation Based Controller for Trajectory Tracking in Mobile Robots. J Intell Robot Syst 86, 569–581 (2017). https://doi.org/10.1007/s10846-016-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-016-0422-4

Keywords

Navigation