[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A multi-agent recommender system for supporting device adaptivity in e-Commerce

  • Published:
Journal of Intelligent Information Systems Aims and scope Submit manuscript

Abstract

Traditional recommender systems for e-Commerce support the customers’ activities providing them with useful suggestions about available products in Web stores. To this purpose, in an agent-based context, each customer is often associated with a customer agent that interacts with the site agent associated with the visited e-Commerce Web site. In presence of a high number of interactions between customers and Web sites, the generation of recommendations can be a heavy task for both these agents. Moreover, customers can navigate on the Web by using different devices having different characteristics that may influence customer’s preferences. In this paper we propose a new multi-agent system, called ARSEC, where each device exploited by a customer is associated with a device agent that autonomously monitors his/her behaviour. Furthermore, each customer is associated with a customer agent that collects in a global profile the information provided by his/her device agents and each e-Commerce Web site is associated with a seller agent. Based on the similarity existing among the global profiles the customers are partitioned in clusters, each one managed by a counsellor agent. Recommendations are generated in ARSEC as result of the collaboration between the seller agent and some counsellor agents associated with the customer. The usage of the device agents leads to generating recommendations taking into account the device currently used, while the fully decentralized architecture introduces a strong reduction of the time costs. Some experimental results are presented to show the significant advantages obtained by ARSEC in terms of recommendation effectiveness with respect to other well-known agent-based recommenders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ackerman, M. S., Cranor, L. F., & Reagle, J. (1999). Privacy in e-Commerce: Examining user scenarios and privacy preferences. In ACM conf. on electronic commerce (pp. 1–8). New York: ACM.

    Google Scholar 

  • Adam, R. A., & Yesha, Y. (2000). Electronic commerce: Current research issues and applications. Berlin: Springer-Verlag.

    Google Scholar 

  • Adomaviciu, G., & Tuzhilin, A. (2001). Using data mining methods to build customer profiles. Computer, 34, 74–82.

    Article  Google Scholar 

  • Anderson, C. R., Domingos, P., & Weld, D. S. (2001). Adaptive web navigation for wireless devices. In Proc. of the 17th Int. Joint Con. on Artificial Intelligence (IJCAI 2001) (pp. 879–884). San Fransisco: Morgan Kaufmann.

    Google Scholar 

  • Ardissono, L., Goy, A., Petrone, G., Segnan, M., & Torasso, P. (2003). INTRIGUE: Personalized recommendation of tourist attractions for desktop and handset devices. Applied Artificial Intelligence: Special Issue on Artificial Intelligence for Cultural Heritage and Digital Libreries, 17(8–9), 687–714.

    Google Scholar 

  • Badica, C., Ganzha, M., & Paprzycki, M. (2005). Mobile agents in a multi-agent e-Commerce system. In Proc. of the 17th int. symp. on symbolic and numeric algorithms for scientific computing (pp. 207–215). Washington: IEEE Computer Society.

    Google Scholar 

  • Badica, C., Mangioni, G., & Rahimi, S. (2010). Intelligent distributed information systems. Information Science, 180(10), 1779–1780.

    Article  MathSciNet  Google Scholar 

  • Berkhin, P. (2006). A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, & M. Teboulle (Eds.), Grouping multidimensional data (pp. 25–71). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Bohte, S. M., Gerding, E., & La Poutré, J. A. (2004). Market-based recommendation: Agents that compete for consumer attention. ACM Transaction on Internet Technology, 4(4), 420–448.

    Article  Google Scholar 

  • Burke, R. D. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adaptivity Interaction, 12(4), 331–370.

    Article  MATH  Google Scholar 

  • Caire, G. (2003). LEAP 3.0: User guide, TLAB.

  • Canny, J. F. (2002). Collaborative filtering with privacy. In Proc. of IEEE Symp. on research in security and Privacy (pp. 45–57). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  • Castro-Schez, J. J., Miguel, R., Vallejo, D., & López-López, L. M. (2011). A highly adaptive recommender system based on fuzzy logic for B2C e-Commerce portals. Expert Systems with Applications, 38(3), 2441–2454.

    Article  Google Scholar 

  • Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35, 231–243.

    Article  Google Scholar 

  • Cunningham, P., Bergmann, R., Schmitt, S., Traphöner, R., Breen, S., & Smyth, B. (2000). WEBSELL: Intelligent sales assistants for the World Wide Web. In Proc. of the Work. Programme at the 4th int. conf. on case-based reasoning (pp. 104–109).

  • De Bra, P., Aerts, A., Smits, D., & Stash, N. (2002). AHA! The next generation. In Proc. of the 13th ACM conf. on hypertext and hypermedia, HYPERTEXT ’02 (pp. 21–22). New York: ACM.

    Chapter  Google Scholar 

  • De Meo, P., Rosaci, D., Sarnè, G. M. L., Ursino, D., & Terracina, G. (2007). EC-XAMAS: Supporting e-Commerce activities by an XML-based adaptive multi-agent system. Applied Artifificial Intelligence, 21(6), 529–562.

    Article  Google Scholar 

  • De Meo, P., Rosaci, D., Sarnè, G. M. L., Terracina, G., & Ursino, D. (2003). An XML-based adaptive multi-agent system for handling e-Commerce activities. In Proc. of the 1st int. conf. ICWS-Europe 2003. LNCS (Vol. 2853, pp. 152–166). Berlin: Springer-Verlag.

    Google Scholar 

  • Di Stefano, A., Pappalardo, G., Santoro, C., & Tramontana, E. (2002). A multi-agent reflective architecture for user assistance and its application to e-Commerce. In Proc. of the 6th int. work. on cooperative information agents VI. LNCS (Vol. 2446, pp. 90–103). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Garruzzo, S., Modafferi, S., Rosaci, D., & Ursino, D. (2002). X-compass: An XML agent for supporting user navigation on the web. In 5th int. conf. on Flexible Query Answering Systems, FQAS ’02. LNCS (Vol. 2522, pp. 197–211). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Greenstette, G. (1994). Explorations in authomatic thesaurus construction. Hingham: Kluwer Academic Pub.

    Book  Google Scholar 

  • Herlocker, J., Konstan, J., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In ACM 2000 conf. on computer supported cooperative work (Vol. 12, pp. 241–250). New York: ACM.

    Google Scholar 

  • Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proc. of the 22nd annual int. ACM SIGIR conf. on research and development in information retrieval, SIGIR ’99 (pp. 230–237). New York: ACM.

    Chapter  Google Scholar 

  • Jacobsson, M., Rost, M., & Holmquist, L. H. (2006). When media gets wise: Collaborative filtering with mobile media agents. In Proc. of the 11th int. conf. on Intel. User Interfaces (IUI ’06) (pp. 291–293). New York: ACM.

    Chapter  Google Scholar 

  • Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computuer Survey, 31, 264–323.

    Article  Google Scholar 

  • Jogalekar, P., & Woodside, M. (2000). Evaluating the scalability of distributed systems. IEEE Transaction on Parallel Distributed Systems, 11(6), 589–603.

    Article  Google Scholar 

  • Karypis, G. (2001). Evaluation of item-based top-N recommendation algorithms. In Proc. of the 10th int. Conf. on Inf. and Knowledge Management, CIKM ’01 (pp. 247–254). New York: ACM.

    Chapter  Google Scholar 

  • Kim, J. K., Kim, H. K., & Cho, Y. H. (2008). A user-oriented contents recommendation system in peer-to-peer architecture. Expert Systems with Applications, 34(1), 300–312.

    Article  Google Scholar 

  • Kim, Y. S., Yum, B. J. n., Song, J., & Kim, S. M. (2005). Development of a recommender system based on navigational and behavioral patterns of customers in e-Commerce sites. Expert Systems with Applications, 28, 381–393.

    Article  Google Scholar 

  • Kobsa, A., Koenemann, J., & Pohl, W. (2001). Personalized hypermedia presentation techniques for improving online customer relationships. The Knowledge Engineering Review, 16(2), 111–155.

    Article  MATH  Google Scholar 

  • Lee, W. P. (2004). Towards agent-based decision making in the electronic marketplace: Interactive recommendation and automated negotiation. Expert Systems with Applications, 27(4), 665–679.

    Article  Google Scholar 

  • Levy, A. Y., & Weld, D. S. (2000). Intelligent internet systems. Artificial Intelligence, 118(1–2), 1–14.

    Article  Google Scholar 

  • Liu, H., & Keselj, V. (2007). Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users’ future requests. Data Knowledge Engineering, 61(2), 304–330.

    Article  Google Scholar 

  • Lorenzi, F., Correa1, F. A., Bazzan, A. L., Abel, M., & Ricci, F. (2008). A multiagent recommender system with task-based agent specialization. In Proc. of int. work. on Agent Mediated Electronic Commerce (AMEC), in conjuction with AAMAS-2008. AAMAS.

  • Macskassy, S. A., Dayanik, A. A., & Hirsh, H. (2000). Information valets for intelligent information access. In Proc. of AAAI spring symposia series on Adaptive User Interfaces, (AUI-2000). Menlo Park: AAAI Press.

    Google Scholar 

  • Manouselis, N., & Costopoulou, C. (2007). Analysis and classification of multi-criteria recommender systems. World Wide Web, 10(4), 415–441.

    Article  Google Scholar 

  • Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. In Proc of the 18th national conf. on AI (pp. 187–192). Menlo Park: AAAI Press.

    Google Scholar 

  • Miller, B. N., Konstan, J. A., & Riedl, J. (2004). PocketLens: Toward a personal recommender system. ACM Transaction on Information Systems, 22(3), 437–476.

    Article  Google Scholar 

  • Mitchell, T. (ed.) (1997). Machine learning. McGraw Hill.

  • Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2002). Discovery and evaluation of aggregate usage profiles for web personalization. Data Mining Knowledge Discovery, 6, 61–82.

    Article  MathSciNet  Google Scholar 

  • Montaner, M., Lopez, B., & de la Rosa, J. L. (2004). A taxonomy of recommender agents on the internet. Journal on Web Semantics, 19(4), 285–330.

    Google Scholar 

  • Olson, T. (2003). Bootstrapping and decentralizing recommender systems. Ph.D. Thesis, Dept. of Information Technology, Uppsala Univ.

  • Papazoglou, M. P. (2001). Agent-oriented technology in support of e-business. Communications of the ACM, 44(4), 71–77.

    Article  Google Scholar 

  • Parikh, N., & Sundaresan, N. (2009). Buzz-based recommender system. In Proc. of 18th int. conf. on World Wide Web (WWW09) (pp. 1231–1232). New York: ACM.

    Chapter  Google Scholar 

  • Parsons, J., Ralph, P., & Gallagher, K. (2004). Using viewing time to infer user preference in recommender systems. In AAAI workshop on semantic web personalization (pp. 52–64). Menlo Park: AAAI Press.

    Google Scholar 

  • Ratnasamy, S., & McCanne, S. (1999). Scaling end-to-end multicast transports with a topologically-sensitive group formation protocol. In Proc. of the 17th annual int. conf. on network protocols, ICNP ’99 (pp. 79–88). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Rosaci, D., & Sarnè, G. M. L. (2006). MASHA: A multi-agent system handling user and device adaptivity of web sites. User Modeling User-Adaptivity Interaction, 16(5), 435–462.

    Article  Google Scholar 

  • Rosaci, D., & Sarnè, G. M. L. (2010). Efficient personalization of e-learning activities using a multi-device decentralized recommender system. Computational Intelligence, 26(2), 121–141.

    Article  MathSciNet  Google Scholar 

  • Rosaci, D., Sarnè, G. M. L., & Garruzzo, S. (2009). Muaddib: A distributed recommender system supporting device adaptivity. ACM Transansacion on Information Systems, 27(4). doi:10.1145/1629096.1629102.

  • Rowstron, A. I., & Druschel, P. (2001). Pastry: Scalable, decentralized object location, and routing for large-scale Peer-to-Peer systems. In R. Guerraoui (Ed.), Proc. of Middleware 2001, IFIP/ACM int. conf. on distributed systems platforms. LNCS (Vol. 2218, pp. 329–350).

  • Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-Commerce. In Proc. of 2nd ACM conf. on Electronic Commerce (EC ’00) (pp. 158–167). New York: ACM.

    Chapter  Google Scholar 

  • Sarwar, B., Karypis, G., Konstan, J. A., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proc. of the 10th int. conf. on World Wide Web, WWW ’01 (pp. 285–295). New York: ACM.

    Chapter  Google Scholar 

  • Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data Mining Knowledge Discovory, 5(1–2), 115–153,

    Article  MATH  Google Scholar 

  • Schifanella, R., Panisson, A., Gena, C., & Ruffo, G. (2008). MobHinter: Epidemic collaborative filtering and self-organization in mobile ad-hoc networks. In Proc. of 2008 ACM conf. on recommender systems, RecSys 2008 (pp. 27–34). ACM.

  • Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating “word of mouth”. In Proc. of the SIGCHI conf. on human factors in computing systems, CHI ’95 (pp. 210–217). New York: ACM Press/Addison-Wesley Pub. Co.

    Chapter  Google Scholar 

  • Stoica, I., Morris, R., Karger, D. R., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable Peer-to-Peer lookup service for internet applications. In Proc. of SIGCOMM 2001 (pp. 149–160).

  • Stormer, H. (2007). Improving e-Commerce recommender systems by the identification of seasonal products. In Proc. of 22nd conf. on artifical intelligence (AAAI), work. on recommender systems (pp. 92–99). Menlo Park: AAAI Press.

    Google Scholar 

  • Tanenbaum, A. S., & Van Steen, M. (2001). Distributed systems: Principles and paradigms. Upper Saddle River: Prentice Hall PTR.

    Google Scholar 

  • Tveit, A. (2001). Peer-to-Peer based recommendations for mobile commerce. In M. V. Devarakonda, A. Joshi, & M. S. Viveros (Eds.), Proc. of 1st int.l work. on mobile commerce, 2001 (pp. 26–29). New York: ACM.

    Google Scholar 

  • Wang, F. H., & Shao, H. M. (2004). Effective personalized recommendation based on time-framed navigation clustering and association mining. Expert Systems with Applications, 27, 365–377.

    Article  Google Scholar 

  • Wei, C. P., Shaw, M. J., & Easley, R. F. (2002). e-service: New directions in theory and practice, Chapter 9. A survey of recommendation systems in electonic commerce. Armonk: ME Sharpe.

  • Wei, K., Huang, J., & Fu, S. (2007). A survey of e-Commerce recommender systems. In Proc. of 13th int. conf. on service systems and service management (pp. 1–5). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Weng, L.-T., Xu, Y., Li, Y., & Nayak, R. (2006). A fair peer selection algorithm for an ecommerce-oriented distributed recommender system. In Proc. of 4th conf. on advances in intelligent IT (pp. 31–37). IOS Press.

  • Weng, S. S., & Liu, M. J. (2004). Feature-based recommendations for one-to-one marketing. Expert Systems with Applications, 26, 493–508.

    Article  Google Scholar 

  • Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.

    Article  Google Scholar 

  • Zhang, W., Xu, B., Song, W., Yang, H., & Liu, K. (2000). Data mining algorithms for web pre-fetching. In Proc. of the 1st int. conf. on Web Information Systems Engineering (WISE’00), WISE ’00 (Vol. 2, pp. 2034–2044). Washington: IEEE Computer Society.

    Google Scholar 

  • Zhao, B. Y., Kubiatowicz, J., & Joseph, A. D. (2002). Tapestry: A fault-tolerant wide-area application infrastructure. Computer Communication Review, 32(1), 81.

    Article  Google Scholar 

  • Zhong, S. (2007). Privacy-preserving algorithms for distributed mining of frequent item sets. Information Science, 177(2), 490–503.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Rosaci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosaci, D., Sarné, G.M.L. A multi-agent recommender system for supporting device adaptivity in e-Commerce. J Intell Inf Syst 38, 393–418 (2012). https://doi.org/10.1007/s10844-011-0160-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10844-011-0160-9

Keywords

Navigation