Abstract
Traditional recommender systems for e-Commerce support the customers’ activities providing them with useful suggestions about available products in Web stores. To this purpose, in an agent-based context, each customer is often associated with a customer agent that interacts with the site agent associated with the visited e-Commerce Web site. In presence of a high number of interactions between customers and Web sites, the generation of recommendations can be a heavy task for both these agents. Moreover, customers can navigate on the Web by using different devices having different characteristics that may influence customer’s preferences. In this paper we propose a new multi-agent system, called ARSEC, where each device exploited by a customer is associated with a device agent that autonomously monitors his/her behaviour. Furthermore, each customer is associated with a customer agent that collects in a global profile the information provided by his/her device agents and each e-Commerce Web site is associated with a seller agent. Based on the similarity existing among the global profiles the customers are partitioned in clusters, each one managed by a counsellor agent. Recommendations are generated in ARSEC as result of the collaboration between the seller agent and some counsellor agents associated with the customer. The usage of the device agents leads to generating recommendations taking into account the device currently used, while the fully decentralized architecture introduces a strong reduction of the time costs. Some experimental results are presented to show the significant advantages obtained by ARSEC in terms of recommendation effectiveness with respect to other well-known agent-based recommenders.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ackerman, M. S., Cranor, L. F., & Reagle, J. (1999). Privacy in e-Commerce: Examining user scenarios and privacy preferences. In ACM conf. on electronic commerce (pp. 1–8). New York: ACM.
Adam, R. A., & Yesha, Y. (2000). Electronic commerce: Current research issues and applications. Berlin: Springer-Verlag.
Adomaviciu, G., & Tuzhilin, A. (2001). Using data mining methods to build customer profiles. Computer, 34, 74–82.
Anderson, C. R., Domingos, P., & Weld, D. S. (2001). Adaptive web navigation for wireless devices. In Proc. of the 17th Int. Joint Con. on Artificial Intelligence (IJCAI 2001) (pp. 879–884). San Fransisco: Morgan Kaufmann.
Ardissono, L., Goy, A., Petrone, G., Segnan, M., & Torasso, P. (2003). INTRIGUE: Personalized recommendation of tourist attractions for desktop and handset devices. Applied Artificial Intelligence: Special Issue on Artificial Intelligence for Cultural Heritage and Digital Libreries, 17(8–9), 687–714.
Badica, C., Ganzha, M., & Paprzycki, M. (2005). Mobile agents in a multi-agent e-Commerce system. In Proc. of the 17th int. symp. on symbolic and numeric algorithms for scientific computing (pp. 207–215). Washington: IEEE Computer Society.
Badica, C., Mangioni, G., & Rahimi, S. (2010). Intelligent distributed information systems. Information Science, 180(10), 1779–1780.
Berkhin, P. (2006). A survey of clustering data mining techniques. In J. Kogan, C. Nicholas, & M. Teboulle (Eds.), Grouping multidimensional data (pp. 25–71). Berlin: Springer-Verlag.
Bohte, S. M., Gerding, E., & La Poutré, J. A. (2004). Market-based recommendation: Agents that compete for consumer attention. ACM Transaction on Internet Technology, 4(4), 420–448.
Burke, R. D. (2002). Hybrid recommender systems: Survey and experiments. User Modeling and User-Adaptivity Interaction, 12(4), 331–370.
Caire, G. (2003). LEAP 3.0: User guide, TLAB.
Canny, J. F. (2002). Collaborative filtering with privacy. In Proc. of IEEE Symp. on research in security and Privacy (pp. 45–57). Los Alamitos: IEEE Computer Society Press.
Castro-Schez, J. J., Miguel, R., Vallejo, D., & López-López, L. M. (2011). A highly adaptive recommender system based on fuzzy logic for B2C e-Commerce portals. Expert Systems with Applications, 38(3), 2441–2454.
Cheung, K. W., Kwok, J. T., Law, M. H., & Tsui, K. C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35, 231–243.
Cunningham, P., Bergmann, R., Schmitt, S., Traphöner, R., Breen, S., & Smyth, B. (2000). WEBSELL: Intelligent sales assistants for the World Wide Web. In Proc. of the Work. Programme at the 4th int. conf. on case-based reasoning (pp. 104–109).
De Bra, P., Aerts, A., Smits, D., & Stash, N. (2002). AHA! The next generation. In Proc. of the 13th ACM conf. on hypertext and hypermedia, HYPERTEXT ’02 (pp. 21–22). New York: ACM.
De Meo, P., Rosaci, D., Sarnè, G. M. L., Ursino, D., & Terracina, G. (2007). EC-XAMAS: Supporting e-Commerce activities by an XML-based adaptive multi-agent system. Applied Artifificial Intelligence, 21(6), 529–562.
De Meo, P., Rosaci, D., Sarnè, G. M. L., Terracina, G., & Ursino, D. (2003). An XML-based adaptive multi-agent system for handling e-Commerce activities. In Proc. of the 1st int. conf. ICWS-Europe 2003. LNCS (Vol. 2853, pp. 152–166). Berlin: Springer-Verlag.
Di Stefano, A., Pappalardo, G., Santoro, C., & Tramontana, E. (2002). A multi-agent reflective architecture for user assistance and its application to e-Commerce. In Proc. of the 6th int. work. on cooperative information agents VI. LNCS (Vol. 2446, pp. 90–103). Berlin: Springer-Verlag.
Garruzzo, S., Modafferi, S., Rosaci, D., & Ursino, D. (2002). X-compass: An XML agent for supporting user navigation on the web. In 5th int. conf. on Flexible Query Answering Systems, FQAS ’02. LNCS (Vol. 2522, pp. 197–211). Berlin: Springer-Verlag.
Greenstette, G. (1994). Explorations in authomatic thesaurus construction. Hingham: Kluwer Academic Pub.
Herlocker, J., Konstan, J., & Riedl, J. (2000). Explaining collaborative filtering recommendations. In ACM 2000 conf. on computer supported cooperative work (Vol. 12, pp. 241–250). New York: ACM.
Herlocker, J. L., Konstan, J. A., Borchers, A., & Riedl, J. (1999). An algorithmic framework for performing collaborative filtering. In Proc. of the 22nd annual int. ACM SIGIR conf. on research and development in information retrieval, SIGIR ’99 (pp. 230–237). New York: ACM.
Jacobsson, M., Rost, M., & Holmquist, L. H. (2006). When media gets wise: Collaborative filtering with mobile media agents. In Proc. of the 11th int. conf. on Intel. User Interfaces (IUI ’06) (pp. 291–293). New York: ACM.
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computuer Survey, 31, 264–323.
Jogalekar, P., & Woodside, M. (2000). Evaluating the scalability of distributed systems. IEEE Transaction on Parallel Distributed Systems, 11(6), 589–603.
Karypis, G. (2001). Evaluation of item-based top-N recommendation algorithms. In Proc. of the 10th int. Conf. on Inf. and Knowledge Management, CIKM ’01 (pp. 247–254). New York: ACM.
Kim, J. K., Kim, H. K., & Cho, Y. H. (2008). A user-oriented contents recommendation system in peer-to-peer architecture. Expert Systems with Applications, 34(1), 300–312.
Kim, Y. S., Yum, B. J. n., Song, J., & Kim, S. M. (2005). Development of a recommender system based on navigational and behavioral patterns of customers in e-Commerce sites. Expert Systems with Applications, 28, 381–393.
Kobsa, A., Koenemann, J., & Pohl, W. (2001). Personalized hypermedia presentation techniques for improving online customer relationships. The Knowledge Engineering Review, 16(2), 111–155.
Lee, W. P. (2004). Towards agent-based decision making in the electronic marketplace: Interactive recommendation and automated negotiation. Expert Systems with Applications, 27(4), 665–679.
Levy, A. Y., & Weld, D. S. (2000). Intelligent internet systems. Artificial Intelligence, 118(1–2), 1–14.
Liu, H., & Keselj, V. (2007). Combined mining of web server logs and web contents for classifying user navigation patterns and predicting users’ future requests. Data Knowledge Engineering, 61(2), 304–330.
Lorenzi, F., Correa1, F. A., Bazzan, A. L., Abel, M., & Ricci, F. (2008). A multiagent recommender system with task-based agent specialization. In Proc. of int. work. on Agent Mediated Electronic Commerce (AMEC), in conjuction with AAMAS-2008. AAMAS.
Macskassy, S. A., Dayanik, A. A., & Hirsh, H. (2000). Information valets for intelligent information access. In Proc. of AAAI spring symposia series on Adaptive User Interfaces, (AUI-2000). Menlo Park: AAAI Press.
Manouselis, N., & Costopoulou, C. (2007). Analysis and classification of multi-criteria recommender systems. World Wide Web, 10(4), 415–441.
Melville, P., Mooney, R. J., & Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations. In Proc of the 18th national conf. on AI (pp. 187–192). Menlo Park: AAAI Press.
Miller, B. N., Konstan, J. A., & Riedl, J. (2004). PocketLens: Toward a personal recommender system. ACM Transaction on Information Systems, 22(3), 437–476.
Mitchell, T. (ed.) (1997). Machine learning. McGraw Hill.
Mobasher, B., Dai, H., Luo, T., & Nakagawa, M. (2002). Discovery and evaluation of aggregate usage profiles for web personalization. Data Mining Knowledge Discovery, 6, 61–82.
Montaner, M., Lopez, B., & de la Rosa, J. L. (2004). A taxonomy of recommender agents on the internet. Journal on Web Semantics, 19(4), 285–330.
Olson, T. (2003). Bootstrapping and decentralizing recommender systems. Ph.D. Thesis, Dept. of Information Technology, Uppsala Univ.
Papazoglou, M. P. (2001). Agent-oriented technology in support of e-business. Communications of the ACM, 44(4), 71–77.
Parikh, N., & Sundaresan, N. (2009). Buzz-based recommender system. In Proc. of 18th int. conf. on World Wide Web (WWW09) (pp. 1231–1232). New York: ACM.
Parsons, J., Ralph, P., & Gallagher, K. (2004). Using viewing time to infer user preference in recommender systems. In AAAI workshop on semantic web personalization (pp. 52–64). Menlo Park: AAAI Press.
Ratnasamy, S., & McCanne, S. (1999). Scaling end-to-end multicast transports with a topologically-sensitive group formation protocol. In Proc. of the 17th annual int. conf. on network protocols, ICNP ’99 (pp. 79–88). Washington: IEEE Computer Society.
Rosaci, D., & Sarnè, G. M. L. (2006). MASHA: A multi-agent system handling user and device adaptivity of web sites. User Modeling User-Adaptivity Interaction, 16(5), 435–462.
Rosaci, D., & Sarnè, G. M. L. (2010). Efficient personalization of e-learning activities using a multi-device decentralized recommender system. Computational Intelligence, 26(2), 121–141.
Rosaci, D., Sarnè, G. M. L., & Garruzzo, S. (2009). Muaddib: A distributed recommender system supporting device adaptivity. ACM Transansacion on Information Systems, 27(4). doi:10.1145/1629096.1629102.
Rowstron, A. I., & Druschel, P. (2001). Pastry: Scalable, decentralized object location, and routing for large-scale Peer-to-Peer systems. In R. Guerraoui (Ed.), Proc. of Middleware 2001, IFIP/ACM int. conf. on distributed systems platforms. LNCS (Vol. 2218, pp. 329–350).
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of recommendation algorithms for e-Commerce. In Proc. of 2nd ACM conf. on Electronic Commerce (EC ’00) (pp. 158–167). New York: ACM.
Sarwar, B., Karypis, G., Konstan, J. A., & Reidl, J. (2001). Item-based collaborative filtering recommendation algorithms. In Proc. of the 10th int. conf. on World Wide Web, WWW ’01 (pp. 285–295). New York: ACM.
Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data Mining Knowledge Discovory, 5(1–2), 115–153,
Schifanella, R., Panisson, A., Gena, C., & Ruffo, G. (2008). MobHinter: Epidemic collaborative filtering and self-organization in mobile ad-hoc networks. In Proc. of 2008 ACM conf. on recommender systems, RecSys 2008 (pp. 27–34). ACM.
Shardanand, U., & Maes, P. (1995). Social information filtering: Algorithms for automating “word of mouth”. In Proc. of the SIGCHI conf. on human factors in computing systems, CHI ’95 (pp. 210–217). New York: ACM Press/Addison-Wesley Pub. Co.
Stoica, I., Morris, R., Karger, D. R., Kaashoek, M. F., & Balakrishnan, H. (2001). Chord: A scalable Peer-to-Peer lookup service for internet applications. In Proc. of SIGCOMM 2001 (pp. 149–160).
Stormer, H. (2007). Improving e-Commerce recommender systems by the identification of seasonal products. In Proc. of 22nd conf. on artifical intelligence (AAAI), work. on recommender systems (pp. 92–99). Menlo Park: AAAI Press.
Tanenbaum, A. S., & Van Steen, M. (2001). Distributed systems: Principles and paradigms. Upper Saddle River: Prentice Hall PTR.
Tveit, A. (2001). Peer-to-Peer based recommendations for mobile commerce. In M. V. Devarakonda, A. Joshi, & M. S. Viveros (Eds.), Proc. of 1st int.l work. on mobile commerce, 2001 (pp. 26–29). New York: ACM.
Wang, F. H., & Shao, H. M. (2004). Effective personalized recommendation based on time-framed navigation clustering and association mining. Expert Systems with Applications, 27, 365–377.
Wei, C. P., Shaw, M. J., & Easley, R. F. (2002). e-service: New directions in theory and practice, Chapter 9. A survey of recommendation systems in electonic commerce. Armonk: ME Sharpe.
Wei, K., Huang, J., & Fu, S. (2007). A survey of e-Commerce recommender systems. In Proc. of 13th int. conf. on service systems and service management (pp. 1–5). Washington: IEEE Computer Society.
Weng, L.-T., Xu, Y., Li, Y., & Nayak, R. (2006). A fair peer selection algorithm for an ecommerce-oriented distributed recommender system. In Proc. of 4th conf. on advances in intelligent IT (pp. 31–37). IOS Press.
Weng, S. S., & Liu, M. J. (2004). Feature-based recommendations for one-to-one marketing. Expert Systems with Applications, 26, 493–508.
Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16(3), 645–678.
Zhang, W., Xu, B., Song, W., Yang, H., & Liu, K. (2000). Data mining algorithms for web pre-fetching. In Proc. of the 1st int. conf. on Web Information Systems Engineering (WISE’00), WISE ’00 (Vol. 2, pp. 2034–2044). Washington: IEEE Computer Society.
Zhao, B. Y., Kubiatowicz, J., & Joseph, A. D. (2002). Tapestry: A fault-tolerant wide-area application infrastructure. Computer Communication Review, 32(1), 81.
Zhong, S. (2007). Privacy-preserving algorithms for distributed mining of frequent item sets. Information Science, 177(2), 490–503.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rosaci, D., Sarné, G.M.L. A multi-agent recommender system for supporting device adaptivity in e-Commerce. J Intell Inf Syst 38, 393–418 (2012). https://doi.org/10.1007/s10844-011-0160-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10844-011-0160-9