[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Predicting spike timing of neocortical pyramidal neurons by simple threshold models

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Neurons generate spikes reliably with millisecond precision if driven by a fluctuating current—is it then possible to predict the spike timing knowing the input? We determined parameters of an adapting threshold model using data recorded in vitro from 24 layer 5 pyramidal neurons from rat somatosensory cortex, stimulated intracellularly by a fluctuating current simulating synaptic bombardment in vivo. The model generates output spikes whenever the membrane voltage (a filtered version of the input current) reaches a dynamic threshold. We find that for input currents with large fluctuation amplitude, up to 75% of the spike times can be predicted with a precision of ±2 ms. Some of the intrinsic neuronal unreliability can be accounted for by a noisy threshold mechanism. Our results suggest that, under random current injection into the soma, (i) neuronal behavior in the subthreshold regime can be well approximated by a simple linear filter; and (ii) most of the nonlinearities are captured by a simple threshold process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles M (1991) Corticonics. Cambridge, Cambridge University Press.

  • Arcas B, Fairhall A (2003) What causes a neuron to spike? Neural Comp. 15: 1789–1807.

    Article  Google Scholar 

  • Arcas B, Fairhall A, Bialek W (2003) Computation in a single neuron: Hodgkin and Huxley revisited. Neural Comp. 15: 1715–1749.

    Article  Google Scholar 

  • Arieli A, Sterkin A, Grinvald A, A, A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273: 1868–1871.

    PubMed  CAS  Google Scholar 

  • Azouz R, Gray C (2000) Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo. Proc. Natl. Acad. Sci. USA 97: 8110–8115.

    Article  PubMed  CAS  Google Scholar 

  • Bair W, Koch C (1996) Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Comp. 8: 1185–1202.

    CAS  Google Scholar 

  • Bair W, Zohary E, Newsome W (2001) Correlated firing in macaque visual area MT: Time scales and relationship to behavior. J. Neurosci. 21: 1676–1697.

    PubMed  CAS  Google Scholar 

  • Benda J, Herz A (2003) A universal model for spike-frequency adaptation. Neural Comp. 15: 2523–2564.

    Article  Google Scholar 

  • Berry M, Warland D, Mesiter M (1997) The structure and precision of retinal spike trains. Proc. Natl. Acad. Sci. USA 94: 5411–5416.

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Rieke F, de Ruyter van Stevenick R, Warland D (1991) Reading a neural code. Science 252: 1854–1857.

    PubMed  CAS  Google Scholar 

  • Borg-Graham L, Monier C, Fregnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393: 369–373.

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg V, Schütz A (1991) Anatomy of the cortex. Berlin, Springer-Verlag.

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94: 3637–3642.

    Article  PubMed  Google Scholar 

  • Brillinger D (1988) The maximum likelihood approach to the identification of neuronal firing systems. Ann. Biomed. Eng. 16: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Brillinger D, Segundo J (1979) Empirical examination of the threshold model of neuronal firing. Biol. Cyber. 35: 213–220.

    Article  CAS  Google Scholar 

  • Bryant H, Segundo J (1976) Spike initiation by transmembrane current: a white noise analysis. J. Physiol. 260: 279–314.

    PubMed  CAS  Google Scholar 

  • Bugmann G, Christodoulou C, Taylor J (1997) Role of temporal integration and fluctuation detection in the highly irregular firing of leaky integrator neuron model with partial reset. Neural Comp. 9: 985–1000.

    Article  Google Scholar 

  • Buracas G, Zador A, De Weese M, Albright T (1998) Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20: 959–969.

    Article  PubMed  CAS  Google Scholar 

  • Cash S, Yuste R (1988) Input summation by cultured pyramidal neurons is linear and position-independent. J. Neurosci. 18: 10–15.

    Google Scholar 

  • Cox D, Miller H (1965) The Theory of Stochastic Processes. New-York, Chapman & Hall.

  • de Ruyter van Stevenick R, Lowen G, Strong S, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275: 1805.

    Article  Google Scholar 

  • De Weese M, Zador A (2003) Binary spiking in auditory Cortex. J. Neurosci. 23: 7940–7949.

    CAS  Google Scholar 

  • De Weese M, Zador A (2004) Shared and private variability in the auditory cortex. J. Neurophysiol. 92: 1840–1855.

    Article  Google Scholar 

  • Destexhe A, Rudolph M, Paré D (2003) The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4: 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Diesmann M, Gewaltig M, Aertsen A (1999) Stable propagation of synchronous spiking in cortical neural networks. Nature 402: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Erisir A, Lau D, Rudy B, Leonard C (1999) Specific K+ channels are required to sustain high frequency firing in fast-spiking neocortical interneurons. J. Neurophysiol. 82: 2476–2489.

    PubMed  CAS  Google Scholar 

  • Fourcaud-Trocmé N, Hansel D, van Vreeswijk C, Brunel N (2003) How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23: 11628–11640.

    PubMed  Google Scholar 

  • Fuortes M, Mantegazzini F (1962) Interpretation of the repetitive firing of nerve cells. J. Gen. Physiol. 45: 1163–1179.

    Article  PubMed  CAS  Google Scholar 

  • Gawne T, Richmond B (1993) How independent are the messages carried by adjacent inferior temporal cortical neurons. J. Neurosci. 13: 2758–2771.

    PubMed  CAS  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 386: 76–78.

    Article  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking Neurons Models: Single Neurons, Populations, Plasticity. Cambridge, Cambridge University Press.

  • Häusser M, Roth A (1997) Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J. Neurosci. 17: 7606–7625.

    PubMed  Google Scholar 

  • Heggelund P, Albus K (1978) Response variability and orientation discrimination of single cells in striate cortex of cat. Exp. Brain Res. 32: 197–211.

    Article  PubMed  CAS  Google Scholar 

  • Helmchen F, Svoboda K, Denk W, Tank D (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat. Neurosci. 2: 989–996.

    Article  PubMed  CAS  Google Scholar 

  • Hill A (1936) Excitation and accommodation in nerve. Proc. Roy. Soc. B 119: 305–355.

    Google Scholar 

  • Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Science 304: 559–564.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich E (2003) Simple model of spiking neurons. IEEE Trans. Neural Net. 14: 1569–1572.

    Article  CAS  Google Scholar 

  • Izhikevich E (2004) Which model to use for cortical spiking neurons? IEEE Trans. Neural Net. 15: 1063–1070.

    Article  Google Scholar 

  • Johansson R, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7: 170–177.

    Article  PubMed  CAS  Google Scholar 

  • Jolivet R (2005) Effective minimal threshold models of neuronal activity. PhD Thesis, Lausanne, Ecole Polytechnique Fédérale de Lausanne (EPFL). http: //icwww.epfl.ch/∼rjolivet/publications/reports/PhDthesis.pdf.

  • Jolivet R, Gerstner W (2004) Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. J. Physiol.-Paris 98: 442–451.

    Article  PubMed  Google Scholar 

  • Jolivet R, Lewis T, Gerstner W (2004) Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92: 959–976.

    Article  PubMed  Google Scholar 

  • Kara P, Reinagel P, Reid R (2000) Low response variabilities in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27: 635–646.

    Article  PubMed  CAS  Google Scholar 

  • Keat J, Reinagel P, Reid R, Meister M (2001) Predicting every spike: A model for the responses of visual neurons. Neuron 30: 803–817.

    Article  PubMed  CAS  Google Scholar 

  • Kistler W, Gerstner W, van Hemmen J (1997) Reduction of Hodgkin-Huxley equations to a single-variable threshold model. Neural Comp. 9: 1015–1045.

    Article  Google Scholar 

  • Koch C, Bernander O, Douglas R (1995) Do neurons have a voltage or a current threshold for action potential initiation? J. Comp. Neuro. 2: 63–82.

    Article  CAS  Google Scholar 

  • Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cereb. cortex 6: 93–101.

    PubMed  CAS  Google Scholar 

  • La Camera G, Rauch A, Lüscher H, Senn W, Fusi S (2004) Minimal models of adapted neuronal response to in vivo-like input currents. Neural Comp. 16: 2101–2124.

    Article  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarization. J. Physiol. Pathol. Gen. 9: 620–635.

    Google Scholar 

  • Larkum M, Zhu J, Sakmann B (2001) Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons. J. Physiol. 533: 447–466.

    Article  PubMed  CAS  Google Scholar 

  • Latham P, Richmond B, Nelson P, Nirenberg S (2000) Intrinsic dynamics in neuronal networks. I. Theory. J. Neurophysiol. 83: 808–827.

    PubMed  CAS  Google Scholar 

  • Lee Y, Schetzen M (1965) Measurement of the wiener kernels of a non-linear system by cross-correlation. Int. J. Control 2: 237–254.

    Google Scholar 

  • Mainen Z, Sejnowski T (1995) Reliability of spike timing in neocortical neurons. Science 268: 1503–1506.

    PubMed  CAS  Google Scholar 

  • McCormick D, Connors B, Lighthall J, Prince D (1985) Comparative electrophysiology of pyramidal and sparsely stellate neurons of the neocortex. J. Neurophysiol. 54: 782–806.

    PubMed  CAS  Google Scholar 

  • Paninski L, Pillow J, Simoncelli E (2005) Comparing integrate-and-fire models estimated using intracellular and extracellular data. Neurocomp. 65/66: 379–385.

    Article  Google Scholar 

  • Polsky A, Mel B, Schiller J (2004) Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7: 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Powers R, Binder M (1996) Experimental evaluation of input-output models of motoneuron discharges. J. Neurophysiol. 75: 367–379.

    PubMed  CAS  Google Scholar 

  • Powers R, Sawczuk A, Musick J, Binder M (1999) Multiple mechanisms of spike-frequency adaptation in motoneurones. J. Physiol.-Paris 93: 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Rauch A, La Camera G, Lüscher H, Senn W, Fusi S (2003) Neocortical pyramidal cells respond as integrate-and-fire neurons to in-vivo-like input currents. J. Neurophysiol. 90: 1598–1612.

    Article  PubMed  Google Scholar 

  • Reich D, Victor J, Knight B, Ozaki T, Kaplan E (1997) Response variability and timing precision of Neuronal Spike trains in-vivo. J. Neurophysiol. 77: 2836–2841.

    PubMed  CAS  Google Scholar 

  • Reinagel P, Reid R (2002) Precise firing events are conserved across neurons. J. Neurosci. 22: 6837–6841.

    PubMed  CAS  Google Scholar 

  • Rieke F, Warland D, de Ruyter Van Stevenick R, Bialek W (1996) Spikes—Exploring the neural code. Cambridge, MIT Press.

  • Robinson H, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J. Neurosci. Meth. 49: 157–165.

    Article  CAS  Google Scholar 

  • Roth A, Häusser M (2001) Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch-clamp recordings. J. Physiol. 535: 445–472.

    Article  PubMed  CAS  Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comp. 10: 1679–1703.

    Article  CAS  Google Scholar 

  • Schwindt P, Crill W (1982) Factors influencing motoneuron rhythmic firing: results from a voltage-clamp study. J. Neurophysiol. 48: 875–890.

    PubMed  CAS  Google Scholar 

  • Schwindt P, O’Brien J, Crill W (1997) Quantitative analysis of firing properties of pyramidal neurons from layer 5 of rat sensorimotor cortex. J. Neurophysiol. 77: 2484–2498.

    PubMed  CAS  Google Scholar 

  • Shadlen M, Newsome W (1988) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci. 18: 3870–3896.

    Google Scholar 

  • Stein R (1967) Some models of neuronal variability. Biophys. J. 7: 37–68.

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Timoveev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85: 1969–1985.

    PubMed  CAS  Google Scholar 

  • Stevens C, Zador A (1998) Novel integrate-and-fire like model of repetitive firing in cortical neurons. 5th Joint Symposium on Neural Computation, UCSD, La Jolla, CA, Institute for Neural Computation.

  • Stuart G, Häusser M (2001) Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4: 63–71.

    Article  PubMed  CAS  Google Scholar 

  • Stuart G, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Theunissen F, Miller J (1995) Temporal encoding in nervous systems: a rigorous definition. J. Comp. Neuro. 2: 149–162.

    Article  CAS  Google Scholar 

  • Troyer T, Miller K (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comp. 9: 971–983.

    Article  CAS  Google Scholar 

  • Tuckwell H (1988) Introduction to Theoretic Neurobiology. Cambridge, Cambridge University Press.

  • Wehr M, Zador A (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426: 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Wiener N (1958) Nonlinear Problems in Random Theory. Cambridge, MIT Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud Jolivet.

Additional information

Action Editor: Matthew Wiener

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, R., Rauch, A., Lüscher, HR. et al. Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J Comput Neurosci 21, 35–49 (2006). https://doi.org/10.1007/s10827-006-7074-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-006-7074-5

Keywords

Navigation