[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h−1). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha−1). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha−1). The observed and simulated yield showed a good match with R 2 = 0.95, RMSE = 132.24 kg/ha, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adam, M., Van Bussel, L. G. J., Leffelaar, P. A., Van Keulen, H., & Ewert, F. (2011). Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling, 222, 131–143.

    Article  Google Scholar 

  • Aggarwal, P. K., & Kalra, N. (1994). Simulating the effect of climatic factors, genotype and management on productivity of wheat in India (p. 156). New Delhi: Indian Agricultural Research Institute Publication.

    Google Scholar 

  • Aggarwal, P. K., Banerjee, B., Daryaei, M. G., Bhatia, A., & Bala, A. (2006). InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model. Agricultural Systems, 89, 47–67.

    Article  Google Scholar 

  • Arora, V. K., Gajri, P. R., & Uppal, H. S. (2006). Puddling, irrigation and transplanting-time effects on productivity of rice-wheat system on a sandy loam soil of Punjab, India. Soil and Tillage Research, 85, 212–220.

    Article  Google Scholar 

  • Bali, A. S., & Uppal, H. S. (1992). Effect of date of transplantation and water management practices on yield of Basmati rice (Oryza sativa). Indian Journal of Agronomy, 40, 186–192.

    Google Scholar 

  • Basso, B., McVicar, T. R., & Lee, B. (2007). Remote sensing and GIS applications in agrometeorology. In K. Stitger (Ed.), Chapter 12: Guidelines of agrometeorological practices. Geneva: World Meteorological Organization of the United Nation.

    Google Scholar 

  • Bowman, W. D., Cairns, D. M., Baron, J. S., & Seastedt, T. R. (2002). Islands in the sky: alpine and treeline ecosystems of the Rockies. In J. S. Baron (Ed.), Rocky mountain futures: an ecological perspective (pp. 183–202). Washington (DC): Island Press.

    Google Scholar 

  • Burt, J. E., Hayes, J. T., O’Rourke, P. A., Terjung, W. H., & Tod-hunter, P. E. (1981). A parametric crop water use model. Water Resources Research, 17, 1095–1108.

    Article  Google Scholar 

  • Carbone, G. J., Narumalani, S., & King, M. (1996). Application of remote sensing and GIS technologies with physiological crop models. Photogrammetric Engineering and Remote Sensing, 62, 171–179.

    Google Scholar 

  • Clarke, D., Smith, M., & El-Askari, K. (1998). CropWat for windows: User guide, version 4.2. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Cooley, H. S., Riley, W. J., Torn, M. S., & He, Y. (2005). Impact of agricultural practice on regional climate in a coupled land surface mesoscale model. Journal of Geophysical Research: Atmospheres, (1984–2012):110.D3.

  • Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J., & Allen, L. H. (1990). Simulation as a tool for analyzing crop response to climate change. Transactions of the ASAE, 33(3), 981–990.

    Article  Google Scholar 

  • Dadhwal, V. K. (1999). Remote sensing and GIS for agricultural crop acreage and yield estimation. International Archives of Photogrammetry and Remote Sensing, XXXII, 7-W9, (ISPRS Commission VII/ WG 2 Symposium on Application of Remote Sensing and GIS for Sustainable Development). Dehradun, India, 58–67.

  • Dadhwal, V. K., Sehgal, V. K., Singh, R. P., & Rajak, D. R. (2003). Wheat yield modeling using satellite remote sensing with weather data: recent Indian experience. Mausum, 54, 253–262.

    Google Scholar 

  • Dhanju, M. S., & Shankaranarayana, H. S. (1978). Agricultural Resources Inventory and Survey Experiment (ARISE), ISRO-SAC-TR-11-78. Bangalore: ISRO.

    Google Scholar 

  • Dhiman, S. D., Nandal, D. P., & Hariom. (1999). Performance of dwarf rice (Oryza sativa) varieties under different time of plantation. Indian Journal of Agronomy, 42, 235–255.

    Google Scholar 

  • Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. PE&RS, 69, 665–674.

    Google Scholar 

  • Engel, T., Hoogenboom, G., Jones, J. W., & Wilkens, P. W. (1999). AEGIS/Win: a computer program for the application of crop simulation models across geographical areas. Agronomy Journal, 1997, 919–928.

  • Evenson, R., Herdt, R., & Hossain, M. (1997). Rice research in Asia: progress and priorities. CAB International and IRRI, 418.

  • Fischer, G., van Velthuizen, H. T., Shah, M., & Nachtergaele, F. O. (2002). Global Agro- Ecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report RR-02–002. International Institute for Applied Systems Analysis, Laxenburg, Austria.

  • Ganajaxi, J., Mohan kumar, H. D., Hedge, Y., & Angadi, V. V. (2001). Effect of plantation dates on N levels on the grain yield of aromatic rice genotypes under rain fed conditions. Karnataka Journal of Agricultural Sciences, 14, 758–759.

    Google Scholar 

  • Gosh, M. (2001). Performance of hybrid and high yielding varieties in Teri region of West Bengal. Journal of Interacedemica, 55, 78–581.

    Google Scholar 

  • Hartkamp, A. D., White, J. W., & Hoogenboom, G. (1999). Interfacing geographic information systems with agronomic modeling: a review. Agronomy Journal, 91, 761–772.

    Article  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Roy, T. S., Rahman, M. L., Hossain, M. Z., & Ahmed, J. U. (2009). Tiller dynamics and dry matter production of transplanted rice as affected by plant spacing and number of seedling per hill. Academic Journal of Plant Sciences, 2, 162–168.

    Google Scholar 

  • Hasanuzzaman, M., Ahamed, K. U., Rahmatullah, N. M., Akhter, N., Nahar, K., & Rahman, M. L. (2010). Plant growth characters and productivity of wetland rice (Oryza sativa L.) as affected by application of different manures. Emirates Journal of Food and Agriculture, 22, 46–58.

    Google Scholar 

  • Hayes, M. J., & Decker, W. L. (1996). Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. International Journal of Remote Sensing, 173, 189–3200.

    Google Scholar 

  • Hijmans, R. J., Guiking-Lens, I. M., & van Diepen, C. A. (1994). WOFOST 6.0. (user’s guide for the WOFOST 6.0 crop growth simulation model). Technical Document 12 DLO Winand Staring Centre, Wageningen.

  • IBSNAT. (1989). Decision Support System for Agrotechnology Transfer V2.10 (DSSAT V2.10). Honolulu: Department of Agronomy and Soil Science. College of Tropical Agriculture and Human Resources: University of Hawaii, Hawaii.

  • Ines, A. V. M., Gupta, A. D., & Loof, R. (2002). Application of GIS and crop growth models in estimating water productivity. Agricultural Water Management, 54(3), 205–225.

    Article  Google Scholar 

  • Jara, V., Meza, F. J., Zaviezo, T., & Chorbadjian, R. (2013). Climate change impacts on invasive potential of pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in Chile. Climatic Change, 117(1–2), 305–317.

    Article  Google Scholar 

  • Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic and its relation to climate and vegetation. Ecology Application, 10, 423–426.

    Article  Google Scholar 

  • Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W., & Shiraiwa, T. (2008). The high yield of irrigated rice in Yunnan, China ‘A cross-location analysis’. Field Crops Research, 107, 1–11.

    Article  Google Scholar 

  • Lal, H., Hoogenboom, G., Calixte, J. P., Jones, J. W., & Beinroth, F. H. (1993). Using crop simulation models and GIS for regional productivity analyses. Transactions of ASAE, 36, 175–184.

    Article  Google Scholar 

  • Lansigan, F. P., Bouman, B. A. M., & Aggarwal, P. K. (1996). Yield gaps in selected rice-producing areas in the Philippines. In P. K. Aggarwal, F. P. Lansigan, T. M. Thiyagarajan, & E. G. Rubia (Eds.), Towards integration of models in rice research (pp. 11–18). Wegeningen: SAARP Research Proceedings.

    Google Scholar 

  • Liu, J., Wiberg, D., Zehnder, A. J. B., & Yang, H. (2007a). Modelling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrigation Science, 26, 21–33.

    Article  Google Scholar 

  • Liu, J., Williams, J. R., Zehnder, A. J. B., & Yang, H. (2007b). GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 94, 478–493.

    Article  Google Scholar 

  • Lobell, D. (2013). The use of satellite data for crop yield gap analysis. Field Crops Research, 143, 56–64.

    Article  Google Scholar 

  • Lobell, D. B., Ortiz-Monasterio, J. I., Asner, G. P., Matson, P. A., Naylor, R. L., & Falcon, W. P. (2005). Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 94, 250–256.

    Article  Google Scholar 

  • Mandal, C., Mandal, D. K., Srinivas, C. V., Sehgal, J., & Velayutham., M. (1999). Soil climatic database for crop planning in India. Technical Bulletin No. 53. NBSS and LUP, 1014.

  • Mani, M. S. (1990). Fundamentals of high altitude biology (2nd ed.). New Delhi: Oxford and IBM Publishing Co. Pvt. Ltd.

    Google Scholar 

  • Mearns, L. O., Carbone, G., Doherty, R. M., Tsvetsinskaya, E., Mccarl, B. A., Adams, R. M., & Mcdaniel, L. (2003). The uncertainty due to spatial scale of climate scenarios in integrated assessments: an example from U.S. agricultura. Integrated Assessment, 4, 225–235.

    Article  Google Scholar 

  • Meza, F., Silva, D., & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double cropping as an emerging adaptation. Agricultural Systems, 98, 21–30.

    Article  Google Scholar 

  • Mohammad, H. I., Ahmad, A. R. M., & Abbas, O. M. (2010). Utilization of water budget model for early season forcasting of sorghum and optimum growing dates in Gadaref mechanized rainfed areas—Sudan. Agriculture and Biology Journal of North America, 1(4), 510–525.

    Google Scholar 

  • Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain (pp. 277–294). London: Philosophical Transactions of the Royal Society.

    Google Scholar 

  • Muslim, M., Romshoo, S. A., & Rather, A. Q. (2010). Using RS-Products for Mapping and Studying Agricultural Land Use System. Proceedings of 6th JK Science Congress, University of Kashmir.

  • Naab, J. B., Singh, P., Boote, K. J., Jones, J. W., & Marfo, K. O. (2004). Using CROPGRO-peanut model to quantify yield gaps in the Guinean Savanna zone of Ghana. Agronomy Journal, 96, 1231–1242.

    Article  Google Scholar 

  • Navalgund, R. R., & Sahai, B. (1985). Remote sensing applications in agriculture—Indian experience and plans. In: Proceedings of 4th Asian Agricultural Symposium. Feb. 28-Mar. 1, Kyushu Tokai Univ., Kumamoto, Japan, 329–343.

  • Navalgund, R. R., Parihar, J. S., Ajai, & NageshwarRao, P. P. (1991). Crop inventory using remotely sensed data. Current Science, 61, 162–171.

    Google Scholar 

  • Palusso, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patilf, R., Rugetg, F., Rumbaurc, C., Takách, J., Trnkad, M., Bindii, M., Çaldaðj, B., Ewertc, F., Ferrisee, R., Mirschelb, W., Şaylanj, L., Šiškak, B., Röttera, R., & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy, 35, 103–114.

    Article  Google Scholar 

  • Parton, W. J., McKeown, B., Kirchner, V., & Ojima, D. S. (1992). CENTURY users’ manual. Fort Collins: Colorado State University, NREL Publication.

    Google Scholar 

  • Priya, S., & Shibasaki, R. (2001). National spatial crop yield simulation using GIS-based crop production model. Ecological Modelling, 136(2–3), 113.

    Article  Google Scholar 

  • Rao, M. N., Waits, D. A., & Neilsen, M. L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modelling & Software, 15(8), 745–753.

    Article  Google Scholar 

  • Rashid, M. H., Alam, M. M., Khan, M. A. H., & Ladha, J. K. (2009). Productivity and resource use of direct-(drum)-seeded and transplanted rice in puddled soils in rice-rice and rice-wheat ecosystems. Field Crops Research, 113, 274–281.

    Article  Google Scholar 

  • Rosenthal, W. D., Hammer, G. L., & Butler, D. (1998). Predicting regional grain sorghum production in Australia using spatial data and crop simulation modeling. Agricultural and Forest Meteorology, 91, 263–274.

    Article  Google Scholar 

  • Sahai, B. (1985). Agricultural remote sensing in the Indian context. In Proceedings of US-INDIA Symposium- cum-workshop on Remote Sensing Fundamentals and Applications. Space Applications Centre, Ahmedabad, India.

  • Sahai, B., & Dadhwal, V. K. (1990). Remote sensing in agriculture. In J. P. Verma & A. Verma (Eds.), Technology blending and agrarian prosperity (pp. 83–98). New Delhi: Malhotra Publishing House.

    Google Scholar 

  • Sahai, B., Chandrasekhar, S., Barde, N. K., & NagBhushna, S. R. (1977). Agricultural resources inventory and surveys experiment. In M. J. Rycroft & A. C. Stickland (Eds.), COSPAR space research (pp. 3–8). Oxford: Pergamon Press.

    Google Scholar 

  • Sasaki, K., & Wada, S. (1975). Effect of nitrogen, phosphoric acid and potassium apply on the incidence of sterility in rice plant. Proceedings of the Crop Science Society of Japan, 44, 250–254.

    Article  Google Scholar 

  • Singh, R., & Goyal, R. C. (1993). Use of remote sensing technology in crop yield estimation surveys. Project Report. New Delhi: IASRI.

    Google Scholar 

  • Singh, R., & Ibrahim, A. E. I. (1996). Use of spectral data in Markov Chain model for crop yield forecasting. Journal of the Indian Society of Remote Sensing, 24(3), 145–152.

    Article  Google Scholar 

  • Singh, R., Goyal, R. C., Saha, S. K., & Chhikara, R. S. (1992). Use of satellite spectral data in crop yield estimation surveys. International Journal of Remote Sensing, 13(14), 2583–2592.

    Article  Google Scholar 

  • Singh, R., Semwal, D. P., Rai, A., & Chhikara, R. S. (2000). Small area estimation of crop yield using remote sensing satellite data. International Journal of Remote Sensing, 23(1), 49–56.

    Article  Google Scholar 

  • Sridhar, V. N., Dadhwal, V. K., Sharma, R., Bairagi, G. D., Chaudhari, K. N., & Sharma, A. K. (1994). Wheat production forecasting for a predominantly unirrigated region in Madhya Pradesh (India). International Journal of Remote Sensing, 15, 1307–1316.

    Article  Google Scholar 

  • Stockle, C. O., Martin, S. A., & Campbell, G. S. (1994). Cropsyst, a cropping systems simulation-model—water nitrogen budgets and crop yield. Agricultural Systems, 46(3), 335–359.

    Article  Google Scholar 

  • Stockle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3–4), 289–307.

    Article  Google Scholar 

  • Tan, G., & Shibasaki, R. (2003). Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling, 168(3), 357.

    Article  Google Scholar 

  • Thornton, P. K. (1991). Application of crop simulation models in agricultural research and development in the tropics and subtropics. Paper series P-15. Muscle Shoals: International Fertilizer Development Center.

    Google Scholar 

  • Thornton, P. K., Saka, A. R., Singh, U., Kumwenda, J. D. T., Brink, J. E., & Dent, J. B. (1995). Application of a maize crop simulation model in the central region of Malawi. Experimental Agriculture, 31, 213–226.

    Article  Google Scholar 

  • Tian, Y., Dickson, R. E., Zhou, I., Zeng, X., Dai, Y., Myneni, R. B., Knyazikhin, Y., Zhang, X., Freidl, M., Yu, H., Wu, W., & Shaikh, M. (2004). Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from moderate resolution imaging spectroradiometer (MODIS) and common land model. Journal of Geophysical Research, 109, D01103.

    Google Scholar 

  • White, J., Hoogenboomb, G., Kimball, B., & Wall, G. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124, 357–368.

    Article  Google Scholar 

  • Williams, J. R., Jones, C. A., Kiniry, J. R., & Spaniel, D. A. (1989). The EPIC growth model. Transactions of the American Society of Agricultural Engineering, 32, 479–511.

    Article  Google Scholar 

  • Yang, H., Wang, L., Abbaspour, K. C., & Zehnder, A. J. B. (2006). Virtual water trade: an assessment of water use efficiency in the international food trade. Hydrology and Earth System Sciences, 10(3), 443–454.

    Article  Google Scholar 

  • Yoshida, S. (1977). Physiological consequences of altering plant type and maturity. International Rice Commission Newsletter , 36, 5–16.

  • Zhang, Y., Tang, Q., Zou, Y., Li, D., Qin, J., Yang, S., Chen, L., Xia, B., & Peng, S. (2009). Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Research, 114, 91–98.

    Article  Google Scholar 

Download references

Acknowledgments

I acknowledge assistance extended by the EPIC support team at Backland Research Center, Texas and Swiss Federal Institute for Aquatic Science and Technology (EAWAG), for providing the software support. I acknowledge Mr. Christian Fobes, Swiss Federal Institute for Aquatic Science and Technology (EAWAG) for technical support in down scaling the model. I also like to thank IMD Srinagar for the supply of meteorological data for the study. I acknowledge the anonymous reviewers for the time and effort devoted to review this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Muslim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muslim, M., Romshoo, S.A. & Rather, A.Q. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model. Environ Monit Assess 187, 316 (2015). https://doi.org/10.1007/s10661-015-4564-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4564-9

Keywords

Navigation