Abstract
The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h−1). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha−1). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha−1). The observed and simulated yield showed a good match with R 2 = 0.95, RMSE = 132.24 kg/ha, respectively.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adam, M., Van Bussel, L. G. J., Leffelaar, P. A., Van Keulen, H., & Ewert, F. (2011). Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling, 222, 131–143.
Aggarwal, P. K., & Kalra, N. (1994). Simulating the effect of climatic factors, genotype and management on productivity of wheat in India (p. 156). New Delhi: Indian Agricultural Research Institute Publication.
Aggarwal, P. K., Banerjee, B., Daryaei, M. G., Bhatia, A., & Bala, A. (2006). InfoCrop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. Performance of the model. Agricultural Systems, 89, 47–67.
Arora, V. K., Gajri, P. R., & Uppal, H. S. (2006). Puddling, irrigation and transplanting-time effects on productivity of rice-wheat system on a sandy loam soil of Punjab, India. Soil and Tillage Research, 85, 212–220.
Bali, A. S., & Uppal, H. S. (1992). Effect of date of transplantation and water management practices on yield of Basmati rice (Oryza sativa). Indian Journal of Agronomy, 40, 186–192.
Basso, B., McVicar, T. R., & Lee, B. (2007). Remote sensing and GIS applications in agrometeorology. In K. Stitger (Ed.), Chapter 12: Guidelines of agrometeorological practices. Geneva: World Meteorological Organization of the United Nation.
Bowman, W. D., Cairns, D. M., Baron, J. S., & Seastedt, T. R. (2002). Islands in the sky: alpine and treeline ecosystems of the Rockies. In J. S. Baron (Ed.), Rocky mountain futures: an ecological perspective (pp. 183–202). Washington (DC): Island Press.
Burt, J. E., Hayes, J. T., O’Rourke, P. A., Terjung, W. H., & Tod-hunter, P. E. (1981). A parametric crop water use model. Water Resources Research, 17, 1095–1108.
Carbone, G. J., Narumalani, S., & King, M. (1996). Application of remote sensing and GIS technologies with physiological crop models. Photogrammetric Engineering and Remote Sensing, 62, 171–179.
Clarke, D., Smith, M., & El-Askari, K. (1998). CropWat for windows: User guide, version 4.2. Rome: Food and Agriculture Organization of the United Nations.
Cooley, H. S., Riley, W. J., Torn, M. S., & He, Y. (2005). Impact of agricultural practice on regional climate in a coupled land surface mesoscale model. Journal of Geophysical Research: Atmospheres, (1984–2012):110.D3.
Curry, R. B., Peart, R. M., Jones, J. W., Boote, K. J., & Allen, L. H. (1990). Simulation as a tool for analyzing crop response to climate change. Transactions of the ASAE, 33(3), 981–990.
Dadhwal, V. K. (1999). Remote sensing and GIS for agricultural crop acreage and yield estimation. International Archives of Photogrammetry and Remote Sensing, XXXII, 7-W9, (ISPRS Commission VII/ WG 2 Symposium on Application of Remote Sensing and GIS for Sustainable Development). Dehradun, India, 58–67.
Dadhwal, V. K., Sehgal, V. K., Singh, R. P., & Rajak, D. R. (2003). Wheat yield modeling using satellite remote sensing with weather data: recent Indian experience. Mausum, 54, 253–262.
Dhanju, M. S., & Shankaranarayana, H. S. (1978). Agricultural Resources Inventory and Survey Experiment (ARISE), ISRO-SAC-TR-11-78. Bangalore: ISRO.
Dhiman, S. D., Nandal, D. P., & Hariom. (1999). Performance of dwarf rice (Oryza sativa) varieties under different time of plantation. Indian Journal of Agronomy, 42, 235–255.
Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. PE&RS, 69, 665–674.
Engel, T., Hoogenboom, G., Jones, J. W., & Wilkens, P. W. (1999). AEGIS/Win: a computer program for the application of crop simulation models across geographical areas. Agronomy Journal, 1997, 919–928.
Evenson, R., Herdt, R., & Hossain, M. (1997). Rice research in Asia: progress and priorities. CAB International and IRRI, 418.
Fischer, G., van Velthuizen, H. T., Shah, M., & Nachtergaele, F. O. (2002). Global Agro- Ecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA Research Report RR-02–002. International Institute for Applied Systems Analysis, Laxenburg, Austria.
Ganajaxi, J., Mohan kumar, H. D., Hedge, Y., & Angadi, V. V. (2001). Effect of plantation dates on N levels on the grain yield of aromatic rice genotypes under rain fed conditions. Karnataka Journal of Agricultural Sciences, 14, 758–759.
Gosh, M. (2001). Performance of hybrid and high yielding varieties in Teri region of West Bengal. Journal of Interacedemica, 55, 78–581.
Hartkamp, A. D., White, J. W., & Hoogenboom, G. (1999). Interfacing geographic information systems with agronomic modeling: a review. Agronomy Journal, 91, 761–772.
Hasanuzzaman, M., Nahar, K., Roy, T. S., Rahman, M. L., Hossain, M. Z., & Ahmed, J. U. (2009). Tiller dynamics and dry matter production of transplanted rice as affected by plant spacing and number of seedling per hill. Academic Journal of Plant Sciences, 2, 162–168.
Hasanuzzaman, M., Ahamed, K. U., Rahmatullah, N. M., Akhter, N., Nahar, K., & Rahman, M. L. (2010). Plant growth characters and productivity of wetland rice (Oryza sativa L.) as affected by application of different manures. Emirates Journal of Food and Agriculture, 22, 46–58.
Hayes, M. J., & Decker, W. L. (1996). Using NOAA AVHRR data to estimate maize production in the United States Corn Belt. International Journal of Remote Sensing, 173, 189–3200.
Hijmans, R. J., Guiking-Lens, I. M., & van Diepen, C. A. (1994). WOFOST 6.0. (user’s guide for the WOFOST 6.0 crop growth simulation model). Technical Document 12 DLO Winand Staring Centre, Wageningen.
IBSNAT. (1989). Decision Support System for Agrotechnology Transfer V2.10 (DSSAT V2.10). Honolulu: Department of Agronomy and Soil Science. College of Tropical Agriculture and Human Resources: University of Hawaii, Hawaii.
Ines, A. V. M., Gupta, A. D., & Loof, R. (2002). Application of GIS and crop growth models in estimating water productivity. Agricultural Water Management, 54(3), 205–225.
Jara, V., Meza, F. J., Zaviezo, T., & Chorbadjian, R. (2013). Climate change impacts on invasive potential of pink hibiscus mealybug, Maconellicoccus hirsutus (Green), in Chile. Climatic Change, 117(1–2), 305–317.
Jobbagy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic and its relation to climate and vegetation. Ecology Application, 10, 423–426.
Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W., & Shiraiwa, T. (2008). The high yield of irrigated rice in Yunnan, China ‘A cross-location analysis’. Field Crops Research, 107, 1–11.
Lal, H., Hoogenboom, G., Calixte, J. P., Jones, J. W., & Beinroth, F. H. (1993). Using crop simulation models and GIS for regional productivity analyses. Transactions of ASAE, 36, 175–184.
Lansigan, F. P., Bouman, B. A. M., & Aggarwal, P. K. (1996). Yield gaps in selected rice-producing areas in the Philippines. In P. K. Aggarwal, F. P. Lansigan, T. M. Thiyagarajan, & E. G. Rubia (Eds.), Towards integration of models in rice research (pp. 11–18). Wegeningen: SAARP Research Proceedings.
Liu, J., Wiberg, D., Zehnder, A. J. B., & Yang, H. (2007a). Modelling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrigation Science, 26, 21–33.
Liu, J., Williams, J. R., Zehnder, A. J. B., & Yang, H. (2007b). GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 94, 478–493.
Lobell, D. (2013). The use of satellite data for crop yield gap analysis. Field Crops Research, 143, 56–64.
Lobell, D. B., Ortiz-Monasterio, J. I., Asner, G. P., Matson, P. A., Naylor, R. L., & Falcon, W. P. (2005). Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 94, 250–256.
Mandal, C., Mandal, D. K., Srinivas, C. V., Sehgal, J., & Velayutham., M. (1999). Soil climatic database for crop planning in India. Technical Bulletin No. 53. NBSS and LUP, 1014.
Mani, M. S. (1990). Fundamentals of high altitude biology (2nd ed.). New Delhi: Oxford and IBM Publishing Co. Pvt. Ltd.
Mearns, L. O., Carbone, G., Doherty, R. M., Tsvetsinskaya, E., Mccarl, B. A., Adams, R. M., & Mcdaniel, L. (2003). The uncertainty due to spatial scale of climate scenarios in integrated assessments: an example from U.S. agricultura. Integrated Assessment, 4, 225–235.
Meza, F., Silva, D., & Vigil, H. (2008). Climate change impacts on irrigated maize in Mediterranean climates: evaluation of double cropping as an emerging adaptation. Agricultural Systems, 98, 21–30.
Mohammad, H. I., Ahmad, A. R. M., & Abbas, O. M. (2010). Utilization of water budget model for early season forcasting of sorghum and optimum growing dates in Gadaref mechanized rainfed areas—Sudan. Agriculture and Biology Journal of North America, 1(4), 510–525.
Monteith, J. L. (1977). Climate and the efficiency of crop production in Britain (pp. 277–294). London: Philosophical Transactions of the Royal Society.
Muslim, M., Romshoo, S. A., & Rather, A. Q. (2010). Using RS-Products for Mapping and Studying Agricultural Land Use System. Proceedings of 6th JK Science Congress, University of Kashmir.
Naab, J. B., Singh, P., Boote, K. J., Jones, J. W., & Marfo, K. O. (2004). Using CROPGRO-peanut model to quantify yield gaps in the Guinean Savanna zone of Ghana. Agronomy Journal, 96, 1231–1242.
Navalgund, R. R., & Sahai, B. (1985). Remote sensing applications in agriculture—Indian experience and plans. In: Proceedings of 4th Asian Agricultural Symposium. Feb. 28-Mar. 1, Kyushu Tokai Univ., Kumamoto, Japan, 329–343.
Navalgund, R. R., Parihar, J. S., Ajai, & NageshwarRao, P. P. (1991). Crop inventory using remotely sensed data. Current Science, 61, 162–171.
Palusso, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., Patilf, R., Rugetg, F., Rumbaurc, C., Takách, J., Trnkad, M., Bindii, M., Çaldaðj, B., Ewertc, F., Ferrisee, R., Mirschelb, W., Şaylanj, L., Šiškak, B., Röttera, R., & Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European Journal of Agronomy, 35, 103–114.
Parton, W. J., McKeown, B., Kirchner, V., & Ojima, D. S. (1992). CENTURY users’ manual. Fort Collins: Colorado State University, NREL Publication.
Priya, S., & Shibasaki, R. (2001). National spatial crop yield simulation using GIS-based crop production model. Ecological Modelling, 136(2–3), 113.
Rao, M. N., Waits, D. A., & Neilsen, M. L. (2000). A GIS-based modeling approach for implementation of sustainable farm management practices. Environmental Modelling & Software, 15(8), 745–753.
Rashid, M. H., Alam, M. M., Khan, M. A. H., & Ladha, J. K. (2009). Productivity and resource use of direct-(drum)-seeded and transplanted rice in puddled soils in rice-rice and rice-wheat ecosystems. Field Crops Research, 113, 274–281.
Rosenthal, W. D., Hammer, G. L., & Butler, D. (1998). Predicting regional grain sorghum production in Australia using spatial data and crop simulation modeling. Agricultural and Forest Meteorology, 91, 263–274.
Sahai, B. (1985). Agricultural remote sensing in the Indian context. In Proceedings of US-INDIA Symposium- cum-workshop on Remote Sensing Fundamentals and Applications. Space Applications Centre, Ahmedabad, India.
Sahai, B., & Dadhwal, V. K. (1990). Remote sensing in agriculture. In J. P. Verma & A. Verma (Eds.), Technology blending and agrarian prosperity (pp. 83–98). New Delhi: Malhotra Publishing House.
Sahai, B., Chandrasekhar, S., Barde, N. K., & NagBhushna, S. R. (1977). Agricultural resources inventory and surveys experiment. In M. J. Rycroft & A. C. Stickland (Eds.), COSPAR space research (pp. 3–8). Oxford: Pergamon Press.
Sasaki, K., & Wada, S. (1975). Effect of nitrogen, phosphoric acid and potassium apply on the incidence of sterility in rice plant. Proceedings of the Crop Science Society of Japan, 44, 250–254.
Singh, R., & Goyal, R. C. (1993). Use of remote sensing technology in crop yield estimation surveys. Project Report. New Delhi: IASRI.
Singh, R., & Ibrahim, A. E. I. (1996). Use of spectral data in Markov Chain model for crop yield forecasting. Journal of the Indian Society of Remote Sensing, 24(3), 145–152.
Singh, R., Goyal, R. C., Saha, S. K., & Chhikara, R. S. (1992). Use of satellite spectral data in crop yield estimation surveys. International Journal of Remote Sensing, 13(14), 2583–2592.
Singh, R., Semwal, D. P., Rai, A., & Chhikara, R. S. (2000). Small area estimation of crop yield using remote sensing satellite data. International Journal of Remote Sensing, 23(1), 49–56.
Sridhar, V. N., Dadhwal, V. K., Sharma, R., Bairagi, G. D., Chaudhari, K. N., & Sharma, A. K. (1994). Wheat production forecasting for a predominantly unirrigated region in Madhya Pradesh (India). International Journal of Remote Sensing, 15, 1307–1316.
Stockle, C. O., Martin, S. A., & Campbell, G. S. (1994). Cropsyst, a cropping systems simulation-model—water nitrogen budgets and crop yield. Agricultural Systems, 46(3), 335–359.
Stockle, C. O., Donatelli, M., & Nelson, R. (2003). CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18(3–4), 289–307.
Tan, G., & Shibasaki, R. (2003). Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling, 168(3), 357.
Thornton, P. K. (1991). Application of crop simulation models in agricultural research and development in the tropics and subtropics. Paper series P-15. Muscle Shoals: International Fertilizer Development Center.
Thornton, P. K., Saka, A. R., Singh, U., Kumwenda, J. D. T., Brink, J. E., & Dent, J. B. (1995). Application of a maize crop simulation model in the central region of Malawi. Experimental Agriculture, 31, 213–226.
Tian, Y., Dickson, R. E., Zhou, I., Zeng, X., Dai, Y., Myneni, R. B., Knyazikhin, Y., Zhang, X., Freidl, M., Yu, H., Wu, W., & Shaikh, M. (2004). Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from moderate resolution imaging spectroradiometer (MODIS) and common land model. Journal of Geophysical Research, 109, D01103.
White, J., Hoogenboomb, G., Kimball, B., & Wall, G. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124, 357–368.
Williams, J. R., Jones, C. A., Kiniry, J. R., & Spaniel, D. A. (1989). The EPIC growth model. Transactions of the American Society of Agricultural Engineering, 32, 479–511.
Yang, H., Wang, L., Abbaspour, K. C., & Zehnder, A. J. B. (2006). Virtual water trade: an assessment of water use efficiency in the international food trade. Hydrology and Earth System Sciences, 10(3), 443–454.
Yoshida, S. (1977). Physiological consequences of altering plant type and maturity. International Rice Commission Newsletter , 36, 5–16.
Zhang, Y., Tang, Q., Zou, Y., Li, D., Qin, J., Yang, S., Chen, L., Xia, B., & Peng, S. (2009). Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Research, 114, 91–98.
Acknowledgments
I acknowledge assistance extended by the EPIC support team at Backland Research Center, Texas and Swiss Federal Institute for Aquatic Science and Technology (EAWAG), for providing the software support. I acknowledge Mr. Christian Fobes, Swiss Federal Institute for Aquatic Science and Technology (EAWAG) for technical support in down scaling the model. I also like to thank IMD Srinagar for the supply of meteorological data for the study. I acknowledge the anonymous reviewers for the time and effort devoted to review this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muslim, M., Romshoo, S.A. & Rather, A.Q. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model. Environ Monit Assess 187, 316 (2015). https://doi.org/10.1007/s10661-015-4564-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10661-015-4564-9