Abstract
In this paper, a linear \(\ell \)-intersection pair of codes is introduced as a generalization of linear complementary pairs of codes. Two linear codes are said to be a linear \(\ell \)-intersection pair if their intersection has dimension \(\ell \). Characterizations and constructions of such pairs of codes are given in terms of the corresponding generator and parity-check matrices. Linear \(\ell \)-intersection pairs of MDS codes over \({\mathbb {F}}_q\) of length up to \(q+1\) are given for all possible parameters. As an application, linear \(\ell \)-intersection pairs of codes are used to construct entanglement-assisted quantum error correcting codes. This provides a large number of new MDS entanglement-assisted quantum error correcting codes.
Similar content being viewed by others
References
Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997).
Brun T., Devetak I., Hsieh H.M.: Correcting quantum errors with entanglement. Science 314, 436–439 (2006).
Brun T., Devetak I., Hsieh M.H.: Catalytic quantum error correction. IEEE Trans. Inf. Theory 60, 3073–3089 (2014).
Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10, 131–150 (2016).
Carlet C., Güneri C., Mesnager S., Özbudak F.: Construction of some codes suitable for both side channel and fault injection attacks. In: Proceedings of International Workshop on the Arithmetic of Finite Fields (WAIFI 2018), Bergen (2018).
Carlet C., Güneri C., Özbudak F., Özkaya B., Solé P.: On linear complementary pairs of codes. IEEE Trans. Inf. Theory 64, 6583–6589 (2018).
Carlet C., Mesnager S., Tang C., Qi Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes Cryptogr. 86, 2605–2618 (2018).
Chen J., Huang Y., Feng C., Chen R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process 16, 303 (2017).
Fan Y., Zhang L.: Galois self-dual constacyclic codes. Des. Codes Cryptogr. 84, 473–492 (2017).
Gauss C.F.: Untersuchungen Über Höhere Arithmetik, 2nd edn. Chelsea, New York (1981).
Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 20 June 2019.
Guenda K., Jitman S., Gulliver T.A.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018).
Hsich M.H., Devetak I., Brun T.: General entanglement-assisted quantum error-correcting codes. Phys. Rev. A 76, 062313 (2007).
Jin L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63, 2843–2847 (2017).
Lacan J., Fimes J.: Systematic MDS erasure codes based on Vandermonde matrices. IEEE Commun. Lett. 8, 570–572 (2004).
Lu L., Li R., Guo L., Ma R., Liu Y.: Entanglement-assisted quantum MDS codes from negacyclic codes. Quantum Inf. Process 17, 69 (2018).
Lu L., Ma W., Li R., Ma Y., Liu Y., Cao H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Appl. 53, 309–325 (2018).
Luo G., Cao X., Chen X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65, 2944–2952 (2019).
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing, Amesterdam (1977).
Massey J.L.: Linear codes with complementary duals. Discret. Math. 106–107, 337–342 (1992).
Qian J., Zhang L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86, 1565–1572 (2018).
Roth R.M., Lempel A.: On MDS codes via Cauchy matrices. IEEE Trans. Inf. Theory 35, 1314–1319 (1989).
Wilde M.M., Brun T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008).
Acknowledgements
The authors would like to thank the anonymous referees for very helpful comments. S. Jitman was supported by the Thailand Research Fund and Silpakorn University under Research Grant RSA6280042.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by V. D. Tonchev.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Guenda, K., Gulliver, T.A., Jitman, S. et al. Linear \(\ell \)-intersection pairs of codes and their applications. Des. Codes Cryptogr. 88, 133–152 (2020). https://doi.org/10.1007/s10623-019-00676-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-019-00676-z
Keywords
- Linear complementary pairs
- Linear \(\ell \)-intersection pairs
- Generalized Reed–Solomon codes
- Entanglement-assisted quantum error correcting codes