Abstract
We study the convergence rate of the Circumcentered-Reflection Method (CRM) for solving the convex feasibility problem and compare it with the Method of Alternating Projections (MAP). Under an error bound assumption, we prove that both methods converge linearly, with asymptotic constants depending on a parameter of the error bound, and that the one derived for CRM is strictly better than the one for MAP. Next, we analyze two classes of fairly generic examples. In the first one, the angle between the convex sets approaches zero near the intersection, so that the MAP sequence converges sublinearly, but CRM still enjoys linear convergence. In the second class of examples, the angle between the sets does not vanish and MAP exhibits its standard behavior, i.e., it converges linearly, yet, perhaps surprisingly, CRM attains superlinear convergence.
Similar content being viewed by others
References
Aragón Artacho, F.J., Campoy, R., Tam, M.K.: The Douglas-Rachford algorithm for convex and nonconvex feasibility problems. Math. Methods Oper. Res. 91, 201–240 (2020). https://doi.org/10.1007/s00186-019-00691-9
Bauschke, H.H., Bello-Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces. Numer. Algorithms 73(1), 33–76 (2016). https://doi.org/10.1007/s11075-015-0085-4
Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set Valued Anal. 1(2), 185–212 (1993). https://doi.org/10.1007/BF01027691
Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996). https://doi.org/10.1137/S0036144593251710
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. CMS Books in Mathematics, Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-48311-5
Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study. J. Convex Anal. 23(1), 237–261 (2016)
Bauschke, H.H., Ouyang, H., Wang, X.: On circumcenters of finite sets in Hilbert spaces. Linear Nonlinear Anal. 4(2), 271–295 (2018)
Bauschke, H.H., Ouyang, H., Wang, X.: Circumcentered methods induced by isometries. Vietnam J. Math. 48, 471–508 (2020)
Bauschke, H.H., Ouyang, H., Wang, X.: On circumcenter mappings induced by nonexpansive operators. Pure and Applied Functional Analysis 6(2), 257–288 (2021)
Bauschke, H.H., Ouyang, H., Wang, X.: On the linear convergence of circumcentered isometry methods. Numer. Algorithm 87, 263–297 (2021). https://doi.org/10.1007/s11075-020-00966-x
Behling, R., Bello-Cruz, J.Y., Santos, L.R.: Circumcentering the Douglas-Rachford method. Numer. Algorithm 78(3), 759–776 (2018). https://doi.org/10.1007/s11075-017-0399-5
Behling, R., Bello-Cruz, J.Y., Santos, L.R.: On the linear convergence of the circumcentered-reflection method. Oper. Res. Lett. 46(2), 159–162 (2018). https://doi.org/10.1016/j.orl.2017.11.018
Behling, R., Bello-Cruz, J.Y., Santos, L.R.: The block-wise circumcentered- reflection method. Comput. Optim. Appl. 76(3), 675–699 (2020). https://doi.org/10.1007/s10589-019-00155-0
Behling, R., Bello-Cruz, J.Y., Santos, L.R.: On the circumcentered-reflection method for the convex feasibility problem. Numer. Algorithms 86, 1475–1494 (2021). https://doi.org/10.1007/s11075-020-00941-6
Behling, R., Fischer, A., Haeser, G., Ramos, A., Schönefeld, K.: On the constrained error bound condition and the projected Levenberg-Marquardt method. Optimization 66(8), 1397–1411 (2017). https://doi.org/10.1080/02331934.2016.1200578
Behling, R., Gonçalves, D.S., Santos, S.A.: Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition. J. Optim. Theory Appl. 183(3), 1099–1122 (2019). https://doi.org/10.1007/s10957-019-01586-9
Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10(3), 448–450 (1959). https://doi.org/10.2307/2032864
Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica 9(II), 326–333 (1938)
Dizon, N., Hogan, J., Lindstrom, S.B.: Circumcentering reflection methods for nonconvex feasibility problems. arXiv (2019). https://arxiv.org/abs/1910.04384
Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Pol. Sci. Lett. Class. Sci. Math. Nat. A 35, 355–357 (1937)
Kayalar, S., Weinert, H.L.: Error bounds for the method of alternating projections. Math. Control Signal Syst. 1(1), 43–59 (1988). https://doi.org/10.1007/BF02551235
Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28(1), 96–115 (1984). https://doi.org/10.1007/BF02612715
von Neumann, J.: Functional Operators: The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, vol. 2, no. 22. Princeton University Press, Princeton (1950). https://doi.org/10.2307/j.ctt1bc543b
Acknowledgements
We thank the anonymous referees for their valuable suggestions which significantly improved this manuscript.
Funding
RB was partially supported by the Brazilian Agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants 304392/2018-9 and 429915/2018-7; YBC was partially supported by the National Science Foundation (NSF), Grant DMS—1816449.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Arefidamghani, R., Behling, R., Bello-Cruz, Y. et al. The circumcentered-reflection method achieves better rates than alternating projections. Comput Optim Appl 79, 507–530 (2021). https://doi.org/10.1007/s10589-021-00275-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-021-00275-6