[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The circumcentered-reflection method achieves better rates than alternating projections

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We study the convergence rate of the Circumcentered-Reflection Method (CRM) for solving the convex feasibility problem and compare it with the Method of Alternating Projections (MAP). Under an error bound assumption, we prove that both methods converge linearly, with asymptotic constants depending on a parameter of the error bound, and that the one derived for CRM is strictly better than the one for MAP. Next, we analyze two classes of fairly generic examples. In the first one, the angle between the convex sets approaches zero near the intersection, so that the MAP sequence converges sublinearly, but CRM still enjoys linear convergence. In the second class of examples, the angle between the sets does not vanish and MAP exhibits its standard behavior, i.e., it converges linearly, yet, perhaps surprisingly, CRM attains superlinear convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aragón Artacho, F.J., Campoy, R., Tam, M.K.: The Douglas-Rachford algorithm for convex and nonconvex feasibility problems. Math. Methods Oper. Res. 91, 201–240 (2020). https://doi.org/10.1007/s00186-019-00691-9

    Article  MATH  Google Scholar 

  2. Bauschke, H.H., Bello-Cruz, J.Y., Nghia, T.T.A., Phan, H.M., Wang, X.: Optimal rates of linear convergence of relaxed alternating projections and generalized Douglas-Rachford methods for two subspaces. Numer. Algorithms 73(1), 33–76 (2016). https://doi.org/10.1007/s11075-015-0085-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set Valued Anal. 1(2), 185–212 (1993). https://doi.org/10.1007/BF01027691

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996). https://doi.org/10.1137/S0036144593251710

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. CMS Books in Mathematics, Springer International Publishing (2017). https://doi.org/10.1007/978-3-319-48311-5

  6. Bauschke, H.H., Dao, M.N., Noll, D., Phan, H.M.: Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study. J. Convex Anal. 23(1), 237–261 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Bauschke, H.H., Ouyang, H., Wang, X.: On circumcenters of finite sets in Hilbert spaces. Linear Nonlinear Anal. 4(2), 271–295 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Ouyang, H., Wang, X.: Circumcentered methods induced by isometries. Vietnam J. Math. 48, 471–508 (2020)

    Article  MathSciNet  Google Scholar 

  9. Bauschke, H.H., Ouyang, H., Wang, X.: On circumcenter mappings induced by nonexpansive operators. Pure and Applied Functional Analysis 6(2), 257–288 (2021)

  10. Bauschke, H.H., Ouyang, H., Wang, X.: On the linear convergence of circumcentered isometry methods. Numer. Algorithm 87, 263–297 (2021). https://doi.org/10.1007/s11075-020-00966-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: Circumcentering the Douglas-Rachford method. Numer. Algorithm 78(3), 759–776 (2018). https://doi.org/10.1007/s11075-017-0399-5

    Article  Google Scholar 

  12. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: On the linear convergence of the circumcentered-reflection method. Oper. Res. Lett. 46(2), 159–162 (2018). https://doi.org/10.1016/j.orl.2017.11.018

    Article  MathSciNet  MATH  Google Scholar 

  13. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: The block-wise circumcentered- reflection method. Comput. Optim. Appl. 76(3), 675–699 (2020). https://doi.org/10.1007/s10589-019-00155-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Behling, R., Bello-Cruz, J.Y., Santos, L.R.: On the circumcentered-reflection method for the convex feasibility problem. Numer. Algorithms 86, 1475–1494 (2021). https://doi.org/10.1007/s11075-020-00941-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Behling, R., Fischer, A., Haeser, G., Ramos, A., Schönefeld, K.: On the constrained error bound condition and the projected Levenberg-Marquardt method. Optimization 66(8), 1397–1411 (2017). https://doi.org/10.1080/02331934.2016.1200578

    Article  MathSciNet  MATH  Google Scholar 

  16. Behling, R., Gonçalves, D.S., Santos, S.A.: Local convergence analysis of the Levenberg-Marquardt framework for nonzero-residue nonlinear least-squares problems under an error bound condition. J. Optim. Theory Appl. 183(3), 1099–1122 (2019). https://doi.org/10.1007/s10957-019-01586-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Cheney, W., Goldstein, A.A.: Proximity maps for convex sets. Proc. Am. Math. Soc. 10(3), 448–450 (1959). https://doi.org/10.2307/2032864

    Article  MathSciNet  MATH  Google Scholar 

  18. Cimmino, G.: Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerca Scientifica 9(II), 326–333 (1938)

  19. Dizon, N., Hogan, J., Lindstrom, S.B.: Circumcentering reflection methods for nonconvex feasibility problems. arXiv (2019). https://arxiv.org/abs/1910.04384

  20. Kaczmarz, S.: Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Pol. Sci. Lett. Class. Sci. Math. Nat. A 35, 355–357 (1937)

  21. Kayalar, S., Weinert, H.L.: Error bounds for the method of alternating projections. Math. Control Signal Syst. 1(1), 43–59 (1988). https://doi.org/10.1007/BF02551235

    Article  MathSciNet  MATH  Google Scholar 

  22. Pierra, G.: Decomposition through formalization in a product space. Math. Program. 28(1), 96–115 (1984). https://doi.org/10.1007/BF02612715

    Article  MathSciNet  MATH  Google Scholar 

  23. von Neumann, J.: Functional Operators: The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, vol. 2, no. 22. Princeton University Press, Princeton (1950). https://doi.org/10.2307/j.ctt1bc543b

Download references

Acknowledgements

We thank the anonymous referees for their valuable suggestions which significantly improved this manuscript.

Funding

RB was partially supported by the Brazilian Agency Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants 304392/2018-9 and 429915/2018-7; YBC was partially supported by the National Science Foundation (NSF), Grant DMS—1816449.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz-Rafael Santos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arefidamghani, R., Behling, R., Bello-Cruz, Y. et al. The circumcentered-reflection method achieves better rates than alternating projections. Comput Optim Appl 79, 507–530 (2021). https://doi.org/10.1007/s10589-021-00275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-021-00275-6

Keywords

Mathematics Subject Classification

Navigation