Abstract
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell–Hestenes–Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
Similar content being viewed by others
References
Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Augmented Lagrangian methods under the Constant Positive Linear Dependence constraint qualification. Math. Program. (2007, in press). DOI: 10.1007/s10107-006-0077-1
Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: On Augmented Lagrangian methods with general lower-level constraints. SIAM J. Optim. (2007, in press)
Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between the constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125, 473–485 (2005)
Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
Birgin, E.G., Castillo, R., Martínez, J.M.: Numerical comparison of Augmented Lagrangian algorithms for nonconvex problems. Comput. Optim. Appl. 31, 31–56 (2005)
Birgin, E.G., Martínez, J.M.: Large-scale active-set box-constrained optimization method with spectral projected gradients. Comput. Optim. Appl. 23, 101–125 (2002)
Birgin, E.G., Martínez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10, 1196–1211 (2000)
Birgin, E.G., Martínez, J.M., Raydan, M.: Algorithm 813: SPG—Software for convex-constrained optimization. ACM Trans. Math. Softw. 27, 340–349 (2001)
Birgin, E.G., Martínez, J.M., Raydan, M.: Inexact spectral projected gradient methods on convex sets. IMA J. Numer. Anal. 23, 539–559 (2003)
Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L.: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. 21, 123–160 (1995)
Burdakov, O., Martínez, J.M., Pilotta, E.A.: A limited memory multipoint secant method for bound constrained optimization. Ann. Oper. Res. 117, 51–70 (2002)
Byrd, R.H., Lu, P.H., Nocedal, J., Zhu, C.Y.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)
Conn, A.R., Gould, N.I.M., Toint, P.L.: A globally convergent Augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545–572 (1991)
Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: a Fortran Package for Large Scale Nonlinear Optimization. Springer, Berlin (1992)
Dai, Y.H., Fletcher, R.: On the asymptotic behaviour of some new gradient methods. Math. Program. 103, 541–549 (2005)
Dai, Y.H., Liao, L.Z.: R-linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22, 1–10 (2002)
Dennis, J.E., Schnabel, R.B.: Least change secant updates for quasi-Newton methods. SIAM Rev. 21, 443–459 (1979)
Diniz-Ehrhardt, M.A., Gomes-Ruggiero, M.A., Martínez, J.M., Santos, S.A.: Augmented Lagrangian algorithms based on the spectral projected gradient for solving nonlinear programming problems. J. Optim. Theory Appl. 123, 497–517 (2004)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)
Dostál, Z.: Inexact semimonotonic Augmented Lagrangians with optimal feasibility convergence for convex bound and equality constrained quadratic programming. SIAM J. Numer. Anal. 43, 96–115 (2005)
Dostál, Z., Friedlander, A., Santos, S.A.: Augmented Lagrangian with adaptive precision control for quadratic programming with simple bounds and equality constraints. SIAM J. Optim. 13, 1120–1140 (2003)
Dostál, Z., Gomes, F.A.M., Santos, S.A.: Duality based domain decomposition with natural coarse space for variational inequalities. J. Comput. Appl. Math. 126, 397–415 (2000)
Fletcher, R.: Practical Methods of Optimization. Academic, London (1987)
Fletcher, R.: On the Barzilai–Borwein method. Department of Mathematics, University of Dundee, NA/207, Dundee, Scotland (2001)
Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM Rev. 47, 99–131 (2005)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore/London (1996)
Groceri, G.M., Sottosanto, G.N., Maciel, M.C.: Augmented Penalization algorithms based on BFGS secant approximations and trust region. Technical report, Departamento de Matemáticas, Universidad Nacional del Sur, Bahía Blanca, Argentina (2005)
Gurwitz, C.: A test for cancellation errors in quasi-Newton methods. ACM Trans. Math. Softw. 18, 133–140 (1992)
Hager, W.W.: Analysis and implementation of a dual algorithm for constrained optimization. J. Optim. Theory Appl. 79, 37–71 (1993)
Hager, W.W., Zhang, H.: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16, 170–192 (2005)
Hager, W.W., Zhang, H.: Algorithm 851: CG_DESCENT. A conjugate gradient method with guaranteed descent, ACM Trans. Math. Softw. 32, 113–137 (2006)
Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35–58 (2006)
Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimization. SIAM J. Optim. 17, 526–557 (2006)
Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)
Krejić, N., Martínez, J.M., Mello, M.P., Pilotta, E.A.: Validation of an Augmented Lagrangian algorithm with a Gauss–Newton Hessian approximation using a set of hard-spheres problems. Comput. Optim. Appl. 16, 247–263 (2000)
Martínez, J.M., Qi, L.: Inexact Newton methods for solving nonsmooth equations. J. Comput. Appl. Math. 60, 127–145 (1995)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
Oren, S.S.: Self-scaling variable metric algorithms without line search for unconstrained minimization. Math. Comput. 27, 873–885 (1973)
Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic, New York (1969)
Qi, L., Sun, J.: A nonsmooth version of Newton method. Math. Program. 58, 353–367 (1993)
Qi, L., Wei, Z.: On the constant positive linear dependence condition and its application to SQP method. SIAM J. Optim. 10, 963–981 (2000)
Raydan, M.: On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13, 321–326 (1993)
Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)
Rockafellar, R.T.: The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 12, 555–562 (1973)
Rockafellar, R.T.: Augmented Lagrange multiplier functions and duality in nonconvex programming. SIAM Journal on Control 12, 268–285 (1974)
Zhu, C.Y., Byrd, R.H., Lu, P.H., Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1995)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Birgin, E.G., Martínez, J.M. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Comput Optim Appl 39, 1–16 (2008). https://doi.org/10.1007/s10589-007-9050-z
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-007-9050-z