[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Walking pattern generation for a humanoid robot with compliant joints

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This work presents a walking pattern generator based on the control of the center of mass (COM) states and its experimental validations on the compliant humanoid robot COMAN powered by intrinsically compliant joints. To cope with the inaccuracies of the joint position tracking resulted by the physical compliance, the proposed pattern generator uses the feedback states of the COM and on-line computes the updated COM references. The position and velocity of the COM are the state variables, and the constrained ground reaction force (GRF) limited by the support polygon is the control effort to drive the real COM states to track the desired references. The frequency analysis of the COM demonstrates its low frequency spectrum that indicates the demand of a low control bandwidth which is suitable for a robot system with compliant joints. The effectiveness of the proposed gait generation method was demonstrated by the experiments performed on the COMAN robot. The experimental data such as the COM position and velocity tracking, the GRF applied on feet, the measured step length and the walking velocity are analyzed. The effect of the passive compliance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Buschmann, T. (2010). Simulation and control of biped walking robots. Ph.D. thesis, Faculty of mechanical engineering, Technical University of Munich.

  • Colasanto, L., Tsagarakis, N. G., Li, Z., & Caldwell, D. G. (2012). Internal model control for improving the gait tracking of a compliant humanoid robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Portugal.

  • Geyer, H., Seyfarth, A., & Blickhan, R. (2006). Compliant leg behaviour explains basic dynamics of walking and running. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 2861.

    Article  Google Scholar 

  • Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of honda humanoid robot. In: IEEE International Conference on Robotics and Automation, 2, 1321–1326.

    Google Scholar 

  • Hirose, M., Haikawa, Y., Takenaka, T., & Hirai, K. (2001). Development of humanoid robot ASIMO. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Ieee.

  • Jafari, A., Tsagarakis, N., Vanderborght, B., Caldwell, D. (2010). A novel actuator with adjustable stiffness (AwAS). In: IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4201–4206). IEEE.

  • Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., & Inoue, H. (2002). fast dynamically equilibrated walking trajectory generation method of humanoid robot. Autonomous Robots, 12(1), 71–82.

    Article  MATH  Google Scholar 

  • Kajita, S., Hirukawa, H., Yokoi, K., & Harada, K. (2005). Humanoid robots. Tokyo: Ohm-sha.

    Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. IEEE International Conference on Robotics and Automation (pp. 1620–1626).

  • Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H. (2001). The 3d linear inverted pendulum mode: a simple modeling for a biped walking pattern generation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, (pp. 239–246).

  • Kajita, S., Morisawa, M., Miura, K., Nakaoka, S., Harada, K., Kaneko, K., Kanehiro, F., Yokoi, K. (2010). Biped walking stabilization based on linear inverted pendulum tracking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4489–4496). IEEE.

  • Laffranchi, M., Tsagarakis, N., Caldwell, D. (2010). A variable physical damping actuator (vpda) for compliant robotic joints. In: IEEE International Conference on Robotics and Automation (ICRA) (pp. 1668–1674). IEEE.

  • Li, Z., Tsagarakis, N., Caldwell, D.G. (2012). A passivity based admittance control for stabilizing the compliant humanoid COMAN. In: IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan.

  • Li, Z., Vanderborght, B., Tsagarakis, N.G., Caldwell, D.G. (2010). Fast bipedal walk using large strides by modulating hip posture and toe-heel motion. In: IEEE International Conference on Robotics and Biomimetics. Tianjin, China (Dec 14–18, 2010).

  • Mitobe, K., Capi, G., & Nasu, Y. (2000). Control of walking robots based on manipulation of the zero moment point. Robotica, 18(06), 651–657.

    Article  Google Scholar 

  • Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., Kaneko, K., Hirukawa, H. (2007). Experimentation of Humanoid Walking Allowing Immediate Modification of Foot Place Based on Analytical Solution. IEEE International Conference on Robotics and Automation (pp. 3989–3994).

  • Narioka, K., Tsugawa, S., & Hosoda, K. (2009). 3d limit cycle walking of musculoskeletal humanoid robot with flat feet. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4676–4681) .

  • Ogura, Y., Aikawa, H., Shimomura, K., Morishima, A., Lim, H., Takanishi, A. (2006). Development of a new humanoid robot wabian-2. In: IEEE International Conference on Robotics and Automation (pp. 76–81). IEEE.

  • Popovic, M. B. (2005). Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. The International Journal of Robotics Research, 24(12), 1013–1032.

    Google Scholar 

  • Pratt, J., Carff, J., Drakunov, S., & Goswami, A. (2006). Capture point: A step toward humanoid push recovery. In: IEEE-RAS International Conference on Humanoid Robots (pp. 200–207).

  • Pratt, J.E., & Drakunov, S.V. (2007). Derivation and Application of a Conserved Orbital Energy for the Inverted Pendulum Bipedal Walking Model. Proceedings 2007 IEEE International Conference on Robotics and Automation 0(2), 4653–4660.

  • Pratt, J. E., & Tedrake, R. (2006). Velocity-Based Stability Margins for Fast Bipedal Walking. in the International Science Forum of the University of Heidelberg entitled ”Fast Motions in Biomechanics and Robots” (pp. 1–27). Heidelberg: Germany.

  • Raibert, M., & Hodgins, J. (1991). Animation of dynamic legged locomotion. In: ACM SIGGRAPH Computer Graphics, vol. 25, pp. 349–358. ACM.

  • Sugihara, T. (2009). Standing stabilizability and stepping maneuver in planar bipedalism based on the best COM-ZMP regulator. IEEE International Conference on Robotics and Automation pp., 2009, 1966–1971.

    Google Scholar 

  • Takanishi, A., Ishida, M., Yamazaki, Y., & Kato, I. (1985). The realization of dynamic walking by the biped walking robot WL-10RD. In: IEEE International Conference on Advanced Robotics (pp. 459–466).

  • Takenaka, T., Matsumoto, T., Yoshiike, T., Hasegawa, T., Shirokura, S., Kaneko, H., Orita, A. (2009). Real time motion generation and control for biped robot -4th- report: Integrated balance control. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 1601–1608 (2009). DOI:10.1109/IROS.2009.5354522.

  • Tsagarakis, N., Laffranchi, M., Vanderborght, B., Caldwell, D. (2009). A compact soft actuator unit for small scale human friendly robots. In: IEEE International Conference on Robotics and Automation (pp. 4356–4362). IEEE.

  • Tsagarakis, N., Li, Z., Saglia, J. A., & Caldwell, D. G. (2011). The design of the lower body of the compliant humanoid robot ‘cCub’. 2011 IEEE International Conference on Robotics and Automation (pp. 2035–2040). China: Shanghai.

  • Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., et al. (2007). iCub: The design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics, 21(10), 1151–1175.

    Article  Google Scholar 

  • Tsagarakis, N. G., Becchi, F., Righetti, L., Ijspeert, A., & Caldwell, D. G. (2007). Lower body realization of the baby humanoid-‘iCub’. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3616–3622).

  • Vanderborght, B., Tsagarakis, N., Van Ham, R., Thorson, I., & Caldwell, D. (2009). MACCEPA 2.0: compliant actuator used for energy efficient hopping robot Chobino1D. Autonomous Robots, 31(1), 55–65.

    Article  Google Scholar 

  • Vaughan, E., Di Paolo, E., & Harvey, I. (2004). The evolution of control and adaptation in a 3d powered passive dynamic walker. In: Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, Artificial Life IX (pp. 139–145).

  • Vukobratović, M., Andrić, D., & Borovac, B. (2004). How to achieve various gait patterns from single nominal. Advanced Robotic, 1(2), 99–108.

    Google Scholar 

  • Yamaguchi, J., Takanishi, A., & Kato, I. (1995). Experimental development of a foot mechanism with shock absorbing material for acquisition of landing surface position information and stabilization of dynamic biped walking. In: IEEE International Conference on Robotics and Automation (pp. 2892–2899).

Download references

Acknowledgments

This study is supported by the FP7 European project AMARSi (ICT-248311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Tsagarakis, N.G. & Caldwell, D.G. Walking pattern generation for a humanoid robot with compliant joints. Auton Robot 35, 1–14 (2013). https://doi.org/10.1007/s10514-013-9330-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9330-7

Keywords

Navigation