Abstract
Nuclear autoantibodies have been found in patients with autoimmune diseases. One possible source for nuclear antigens are apoptotic cells. However, the mechanism of how apoptotic cells make nuclear factors accessible to the immune system is still elusive. In the present study, we investigated the redistribution of nuclear components after UV irradiation in the microglial cell line BV-2 and in primary mouse microglia at the ultrastructural level. We used transmission electron microscopy-coupled electron energy loss spectroscopy (EELS) to measure phosphorus as an indicator for nucleic acids and immunogold labeling to detect histone H3 and lamin B1 in apoptotic cells. EELS revealed elevated concentrations of phosphorus in nuclear and cytoplasmic condensed chromatin compared to the remaining cytoplasm. Furthermore, immunolabeling of lamin B1 and histone H3 was detected in apoptotic microglia not only in the nucleus, but also in the cytoplasm, and even at the plasma membrane. Confocal images of apoptotic microglia, which were not previously permeabilized, showed patches of histone H3 and lamin B1 labeling at the cell surface. The pan-caspase inhibitor Z-VAD-FMK (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) prevented the occurrence of cytoplasmic condensed chromatin in apoptotic microglia. Our findings indicate that nuclear components leak from the nucleus into the cytoplasm in apoptotic microglia. At least histone H3 and lamin B1 reach the cell surface, this may promote autoreactive processes.
Similar content being viewed by others
References
Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257
Rao L, Perez D, White E (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol 135(6 Pt 1):1441–1455
Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, Olson MF (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168(2):245–255. doi:10.1083/jcb.200409049
Lazebnik YA, Takahashi A, Moir RD, Goldman RD, Poirier GG, Kaufmann SH, Earnshaw WC (1995) Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 92(20):9042–9046
Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276(10):7320–7326. doi:10.1074/jbc.M008363200M008363200
Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179(4):1317–1330
Radic M, Marion T, Monestier M (2004) Nucleosomes are exposed at the cell surface in apoptosis. J Immunol 172(11):6692–6700
Ravichandran KS (2011) Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35(4):445–455. doi:10.1016/j.immuni.2011.09.004
Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, Voll RE, Winkler T, Kuhn A, Kalden J, Kern P, Herrmann M (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28(2–3):114–121. doi:10.1016/j.jaut.2007.02.005
Savill J, Dransfield I, Gregory C, Haslett C (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2(12):965–975. doi:10.1038/nri957nri957
Elliott MR, Ravichandran KS (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189(7):1059–1070. doi:10.1083/jcb.201004096
Erwig LP, Henson PM (2007) Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 171(1):2–8. doi:10.2353/ajpath.2007.070135
Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140(5):619–630. doi:10.1016/j.cell.2010.02.014
Shao WH, Cohen PL (2011) Disturbances of apoptotic cell clearance in systemic lupus erythematosus. Arthritis research & therapy 13(1):202. doi:10.1186/ar3206
Decker P (2006) Nucleosome autoantibodies. Clin Chim Acta 366(1–2):48–60. doi:10.1016/j.cca.2005.11.009
Gomez-Puerta JA, Burlingame RW, Cervera R (2008) Anti-chromatin (anti-nucleosome) antibodies: diagnostic and clinical value. Autoimmun Rev 7(8):606–611. doi:10.1016/j.autrev.2008.06.005
Rumore PM, Steinman CR (1990) Endogenous circulating DNA in systemic lupus erythematosus. Occurrence as multimeric complexes bound to histone. J Clin Invest 86(1):69–74. doi:10.1172/JCI114716
Ramage AE, Fox PT, Brey RL, Narayana S, Cykowski MD, Naqibuddin M, Sampedro M, Holliday SL, Franklin C, Wallace DJ, Weisman MH, Petri M (2011) Neuroimaging evidence of white matter inflammation in newly diagnosed systemic lupus erythematosus. Arthritis Rheum 63(10):3048–3057. doi:10.1002/art.30458
Sciascia S, Bertolaccini ML, Baldovino S, Roccatello D, Khamashta MA, Sanna G (2013) Central nervous system involvement in systemic lupus erythematosus: overview on classification criteria. Autoimmun Rev 12(3):426–429. doi:10.1016/j.autrev.2012.08.014
Barned S, Goodman AD, Mattson DH (1995) Frequency of anti-nuclear antibodies in multiple sclerosis. Neurology 45(2):384–385
Collard RC, Koehler RP, Mattson DH (1997) Frequency and significance of antinuclear antibodies in multiple sclerosis. Neurology 49(3):857–861
Dore-Duffy P, Donaldson JO, Rothman BL, Zurier RB (1982) Antinuclear antibodies in multiple sclerosis. Arch Neurol 39(8):504–506
Yukitake M, Sueoka E, Sueoka-Aragane N, Sato A, Ohashi H, Yakushiji Y, Saito M, Osame M, Izumo S, Kuroda Y (2008) Significantly increased antibody response to heterogeneous nuclear ribonucleoproteins in cerebrospinal fluid of multiple sclerosis patients but not in patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J Neurovirol 14(2):130–135. doi:10.1080/13550280701883840
Comabella M, Rentzsch K, Rio J, Bustamante MF, Borowski K, Stoecker W, Montalban X (2013) Treatment with interferon-beta does not induce anti-nuclear and anti-neuronal serum autoantibodies in multiple sclerosis patients. J Neuroimmunol 255(1–2):102–104. doi:10.1016/j.jneuroim.2012.10.016
Fukazawa T, Kikuchi S, Sasaki H, Hamada K, Hamada T, Miyasaka K, Tashiro K (1997) Anti-nuclear antibodies and the optic-spinal form of multiple sclerosis. J Neurol 244(8):483–488
Szmyrka-Kaczmarek M, Pokryszko-Dragan A, Pawlik B, Gruszka E, Korman L, Podemski R, Wiland P, Szechinski J (2012) Antinuclear and antiphospholipid antibodies in patients with multiple sclerosis. Lupus 21(4):412–420. doi:10.1177/0961203311427550
Solomon AJ, Hills W, Chen Z, Rosenbaum J, Bourdette D, Whitham R (2013) Autoantibodies and Sjogren’s syndrome in multiple sclerosis, a reappraisal. PLoS ONE 8(6):e65385. doi:10.1371/journal.pone.0065385
Mecocci P, Ekman R, Parnetti L, Senin U (1993) Antihistone and anti-dsDNA autoantibodies in Alzheimer’s disease and vascular dementia. Biol Psychiatry 34(6):380–385
Lopez OL, Rabin BS, Huff FJ, Rezek D, Reinmuth OM (1992) Serum autoantibodies in patients with Alzheimer’s disease and vascular dementia and in nondemented control subjects. Stroke 23(8):1078–1083
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637
Greter M, Merad M (2013) Regulation of microglia development and homeostasis. Glia 61(1):121–127. doi:10.1002/glia.22408
Jung S, Schwartz M (2012) Non-identical twins—microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation. Front Immunol 3:89. doi:10.3389/fimmu.2012.00089
Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553. doi:10.1152/physrev.00011.2010
Parkhurst CN, Gan WB (2010) Microglia dynamics and function in the CNS. Curr Opin Neurobiol 20(5):595–600. doi:10.1016/j.conb.2010.07.002
Graeber MB (2010) Changing face of microglia. Science 330(6005):783–788. doi:10.1126/science.1190929
Polazzi E, Monti B (2010) Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 92(3):293–315. doi:10.1016/j.pneurobio.2010.06.009
Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6. doi:10.3389/fncel.2013.00006
Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161. doi:10.1126/science.1227901
Rawji KS, Yong VW (2013) The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clinical Dev Immunol 2013:948976. doi:10.1155/2013/948976
Lee P, Lee J, Kim S, Lee MS, Yagita H, Kim SY, Kim H, Suk K (2001) NO as an autocrine mediator in the apoptosis of activated microglial cells: correlation between activation and apoptosis of microglial cells. Brain Res 892(2):380–385
Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, Dalmau I, Finsen B (2005) Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48(2):196–206. doi:10.1016/j.brainresrev.2004.12.009
Lee J, Hur J, Lee P, Kim JY, Cho N, Kim SY, Kim H, Lee MS, Suk K (2001) Dual role of inflammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of two separate apoptotic pathways via induction of interferon regulatory factor-1 and caspase-11. J Biol Chem 276(35):32956–32965. doi:10.1074/jbc.M104700200-M104700200
Liu B, Wang K, Gao HM, Mandavilli B, Wang JY, Hong JS (2001) Molecular consequences of activated microglia in the brain: overactivation induces apoptosis. J Neurochem 77(1):182–189
Mayo L, Jacob-Hirsch J, Amariglio N, Rechavi G, Moutin MJ, Lund FE, Stein R (2008) Dual role of CD38 in microglial activation and activation-induced cell death. J Immunol 181(1):92–103
Bonetti B, Pohl J, Gao YL, Raine CS (1997) Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J Immunol 159(11):5733–5741
Kohji T, Matsumoto Y (2000) Coexpression of Fas/FasL and Bax on brain and infiltrating T cells in the central nervous system is closely associated with apoptotic cell death during autoimmune encephalomyelitis. J Neuroimmunol 106(1–2):165–171
White CA, McCombe PA, Pender MP (1998) Microglia are more susceptible than macrophages to apoptosis in the central nervous system in experimental autoimmune encephalomyelitis through a mechanism not involving Fas (CD95). Int Immunol 10(7):935–941
Ransohoff RM, Engelhardt B (2012) The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9):623–635. doi:10.1038/nri3265
Chastain EM, Duncan DS, Rodgers JM, Miller SD (2011) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta 1812(2):265–274. doi:10.1016/j.bbadis.2010.07.008
Goverman JM (2011) Immune tolerance in multiple sclerosis. Immunol Rev 241(1):228–240. doi:10.1111/j.1600-065X.2011.01016.x
Frisoni L, McPhie L, Colonna L, Sriram U, Monestier M, Gallucci S, Caricchio R (2005) Nuclear autoantigen translocation and autoantibody opsonization lead to increased dendritic cell phagocytosis and presentation of nuclear antigens: a novel pathogenic pathway for autoimmunity? J Immunol 175(4):2692–2701
Frisoni L, McPhie L, Kang SA, Monestier M, Madaio M, Satoh M, Caricchio R (2007) Lack of chromatin and nuclear fragmentation in vivo impairs the production of lupus anti-nuclear antibodies. J Immunol 179(11):7959–7966
Gabler C, Blank N, Hieronymus T, Schiller M, Berden JH, Kalden JR, Lorenz HM (2004) Extranuclear detection of histones and nucleosomes in activated human lymphoblasts as an early event in apoptosis. Ann Rheum Dis 63(9):1135–1144. doi:10.1136/ard.2003-011452-63/9/1135
Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, Zhang L, Yoneda Y, Fujii Y, Skoultchi AI, Tsujimoto Y (2003) Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell 114(6):673–688
Okamura H, Yoshida K, Amorim BR, Haneji T (2008) Histone H1.2 is translocated to mitochondria and associates with Bak in bleomycin-induced apoptotic cells. J Cell Biochem 103(5):1488–1496. doi:10.1002/jcb.21537
Schiller M, Bekeredjian-Ding I, Heyder P, Blank N, Ho AD, Lorenz HM (2008) Autoantigens are translocated into small apoptotic bodies during early stages of apoptosis. Cell Death Differ 15(1):183–191. doi:10.1038/sj.cdd.4402239
Zierler S, Klein B, Furtner T, Bresgen N, Lütz-Meindl U, Kerschbaum HH (2006) Ultraviolet irradiation-induced apoptosis does not trigger nuclear fragmentation but translocation of chromatin from nucleus into cytoplasm in the microglial cell-line, BV-2. Brain Res 1121(1):12–21. doi:10.1016/j.brainres.2006.08.122
Blasi E, Barluzzi R, Bocchini V, Mazzolla R, Bistoni F (1990) Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol 27(2–3):229–237
Giulian D, Baker TJ (1986) Characterization of ameboid microglia isolated from developing mammalian brain. J Neurosci 6(8):2163–2178
Frei K, Bodmer S, Schwerdel C, Fontana A (1986) Astrocyte-derived interleukin 3 as a growth factor for microglia cells and peritoneal macrophages. J Immunol 137(11):3521–3527
Lütz-Meindl U, Aichinger N (2004) Use of energy-filtering transmission electron microscopy for routine ultrastructural analysis of high-pressure-frozen or chemically fixed plant cells. Protoplasma 223:155–162. doi:10.1007/s00709-003-0033-3
Brack K, Frings W, Dotzauer A, Vallbracht A (1998) A cytopathogenic, apoptosis-inducing variant of hepatitis A virus. J Virol 72(4):3370–3376
Batista LF, Kaina B, Meneghini R, Menck CF (2009) How DNA lesions are turned into powerful killing structures: insights from UV-induced apoptosis. Mutat Res 681(2–3):197–208. doi:10.1016/j.mrrev.2008.09.001
Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Gorlich D, Nicotera P (2001) Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis. Cell Death Differ 8(5):495–505. doi:10.1038/sj.cdd.4400837
Faleiro L, Lazebnik Y (2000) Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 151(5):951–959
Bano D, Dinsdale D, Cabrera-Socorro A, Maida S, Lambacher N, McColl B, Ferrando-May E, Hengartner MO, Nicotera P (2010) Alteration of the nuclear pore complex in Ca(2+)-mediated cell death. Cell Death Differ 17(1):119–133. doi:10.1038/cdd.2009.112
Patre M, Tabbert A, Hermann D, Walczak H, Rackwitz HR, Cordes VC, Ferrando-May E (2006) Caspases target only two architectural components within the core structure of the nuclear pore complex. J Biol Chem 281(2):1296–1304. doi:10.1074/jbc.M511717200
Gilthorpe JD, Oozeer F, Nash J, Calvo M, Bennett DL, Lumsden A, Pini A (2013) Extracellular histone H1 is neurotoxic and drives a pro-inflammatory response in microglia. F1000Research 2. doi:10.12688/f1000research.2-148.v1
Knight JS, Carmona-Rivera C, Kaplan MJ (2012) Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front Immunol 3:380. doi:10.3389/fimmu.2012.00380
Kaplan MJ, Radic M (2012) Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 189(6):2689–2695. doi:10.4049/jimmunol.1201719
Darrah E, Andrade F (2012) NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 3:428. doi:10.3389/fimmu.2012.00428
Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531. doi:10.1038/nri3024
Brinkmann V, Zychlinsky A (2012) Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol 198(5):773–783. doi:10.1083/jcb.201203170
Goldmann O, Medina E (2012) The expanding world of extracellular traps: not only neutrophils but much more. Front Immunol 3:420. doi:10.3389/fimmu.2012.00420
Amulic B, Hayes G (2011) Neutrophil extracellular traps. Curr Biol 21(9):R297–298. doi:10.1016/j.cub.2011.03.021
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535. doi:10.1126/science.1092385
Yousefi S, Simon D, Simon HU (2012) Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr Opin Immunol 24(6):736–739. doi:10.1016/j.coi.2012.08.010
von Kockritz-Blickwede M, Goldmann O, Thulin P, Heinemann K, Norrby-Teglund A, Rohde M, Medina E (2008) Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood 111(6):3070–3080. doi:10.1182/blood-2007-07-104018
Chow OA, von Kockritz-Blickwede M, Bright AT, Hensler ME, Zinkernagel AS, Cogen AL, Gallo RL, Monestier M, Wang Y, Glass CK, Nizet V (2010) Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8(5):445–454. doi:10.1016/j.chom.2010.10.005
Aulik NA, Hellenbrand KM, Czuprynski CJ (2012) Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect Immun 80(5):1923–1933. doi:10.1128/IAI.06120-11
Hellenbrand KM, Forsythe KM, Rivera-Rivas JJ, Czuprynski CJ, Aulik NA (2013) Histophilus somni causes extracellular trap formation by bovine neutrophils and macrophages. Microb Pathog 54:67–75. doi:10.1016/j.micpath.2012.09.007
Mohanan S, Horibata S, McElwee JL, Dannenberg AJ, Coonrod SA (2013) Identification of macrophage extracellular trap-like structures in mammary gland adipose tissue: a preliminary study. Front Immunol 4:67. doi:10.3389/fimmu.2013.00067
Wong KW, Jacobs WR Jr (2013) Mycobacterium tuberculosis exploits human interferon gamma to stimulate macrophage extracellular trap formation and necrosis. J Infect Dis 208(1):109–119. doi:10.1093/infdis/jit097
Hirsch JG (1958) Bactericidal action of histone. J Exp Med 108(6):925–944
Parseghian MH, Luhrs KA (2006) Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. Biochem Cell Biol 84(4):589–604. doi:10.1139/o06-082
Yipp BG, Petri B, Salina D, Jenne CN, Scott BN, Zbytnuik LD, Pittman K, Asaduzzaman M, Wu K, Meijndert HC, Malawista SE, de Boisfleury Chevance A, Zhang K, Conly J, Kubes P (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18(9):1386–1393. doi:10.1038/nm.2847
Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241. doi:10.1083/jcb.200606027
Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, Simon HU (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14(9):949–953. doi:10.1038/nm.1855
Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16(11):1438–1444. doi:10.1038/cdd.2009.96
Senecal JL, Rauch J, Grodzicky T, Raynauld JP, Uthman I, Nava A, Guimond M, Raymond Y (1999) Strong association of autoantibodies to human nuclear lamin B1 with lupus anticoagulant antibodies in systemic lupus erythematosus. Arthritis Rheum 42(7):1347–1353. doi:10.1002/1529-0131(199907)42:7<1347::AID-ANR7>3.0.CO;2-#
Dieude M, Senecal JL, Rauch J, Hanly JG, Fortin P, Brassard N, Raymond Y (2002) Association of autoantibodies to nuclear lamin B1 with thromboprotection in systemic lupus erythematosus: lack of evidence for a direct role of lamin B1 in apoptotic blebs. Arthritis Rheum 46(10):2695–2707. doi:10.1002/art.10552
Moisan E, Girard D (2006) Cell surface expression of intermediate filament proteins vimentin and lamin B1 in human neutrophil spontaneous apoptosis. J Leukoc Biol 79(3):489–498. doi:10.1189/jlb.0405190
Acknowledgments
B.K. was funded in part by the European Union’s Seventh Framework Programme (FP7/2007-2013) under Grant agreement no HEALTH-F2-2011-278850 (INMiND).
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
10495_2014_970_MOESM1_ESM.tif
Supplementary material 1 (TIFF 283 kb) Time course of DNA laddering in BV-2 microglia after UV irradiation. Lane 1 marker (M), Lane 2 control (C); Lane 3–5 DNA of BV-2 cells 1, 3, or 5 h after UV irradiation
Rights and permissions
About this article
Cite this article
Klein, B., Lütz-Meindl, U. & Kerschbaum, H.H. From the nucleus to the plasma membrane: translocation of the nuclear proteins histone H3 and lamin B1 in apoptotic microglia. Apoptosis 19, 759–775 (2014). https://doi.org/10.1007/s10495-014-0970-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10495-014-0970-7