[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Fuzzy Approximate Entropy Analysis of Chaotic and Natural Complex Systems: Detecting Muscle Fatigue Using Electromyography Signals

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In the present contribution, a complexity measure is proposed to assess surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Approximate entropy (ApEn) is believed to provide quantitative information about the complexity of experimental data that is often corrupted with noise, short data length, and in many cases, has inherent dynamics that exhibit both deterministic and stochastic behaviors. We developed an improved ApEn measure, i.e., fuzzy approximate entropy (fApEn), which utilizes the fuzzy membership function to define the vectors’ similarity. Tests were conducted on independent, identically distributed (i.i.d.) Gaussian and uniform noises, a chirp signal, MIX processes, Rossler equation, and Henon map. Compared with the standard ApEn, the fApEn showed better monotonicity, relative consistency, and more robustness to noise when characterizing signals with different complexities. Performance analysis on experimental EMG signals demonstrated that the fApEn significantly decreased during the development of muscle fatigue, which is a similar trend to that of the mean frequency (MNF) of the EMG signal, while the standard ApEn failed to detect this change. Moreover, fApEn of EMG demonstrated a better robustness to the length of the analysis window in comparison with the MNF of EMG. The results suggest that the fApEn of an EMG signal may potentially become a new reliable method for muscle fatigue assessment and be applicable to other short noisy physiological signal analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Ahmad, S. A., and P. H. Chappell. Moving approximate entropy applied to surface electromyographic signals. Biomed. Sig. Process. Contr. 3:88–93, 2008.

    Article  Google Scholar 

  2. Bilodeau, M., S. Schindler-Ivens, D. M. Williams, R. Chandran, and S. S. Sharma. EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J. Electromyogr. Kinesiol. 13:83–92, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Bonato, P. Recent advancements in the analysis of dynamic EMG data. IEEE Med. Biol. Mag. 20(6):29–32, 2001.

    Article  CAS  Google Scholar 

  4. Bonato, P., S. H. Roy, M. Knaflitz, and C. J. De Luca. Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Trans. Biomed. Eng. 48:745–753, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. Caldirola, D., L. Bellodi, A. Caumo, G. Migliarese, and G. Perna. Approximate entropy of respiratory patterns in panic disorder. Am. J. Psychiatr. 161:79–87, 2004.

    Article  PubMed  Google Scholar 

  6. Chen, X. N., I. Solomon, and K. H. Chon. Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. In: Proceedings of the 2005 IEEE EMBS 27th Annual Conference, Shanghai, 2005, pp. 4212–4215.

  7. Christen, J. A., J. L. Torres, and J. Barrera. A statistical feature of genetic sequences. Biometr. J. 40:855–863, 1998.

    Article  Google Scholar 

  8. DeLuca, C. J. Myoelectric manifestations of localized muscular fatigue in humans. Crit. Rev. Biomed. Eng. 11:251–279, 1984.

    CAS  Google Scholar 

  9. Duchene, J., and F. Goubel. Surface electromyogram during voluntary contraction: processing tools and relation to physiological events. CRC Crit. Rev. Biomed. Eng. 21:313–397, 1993.

    CAS  Google Scholar 

  10. Erfanian, A., H. J. Chizeck, and R. M. Hashemi. Chaotic activity during electrical stimulation of paralyzed muscle. In: 18th Annal International Conference of the IEEE EMBS, Amsterdam, 1996, pp. 1756–1757.

  11. Filligoi, G., and F. Felici. Detection of hidden rhythms in surface EMG signals with a nonlinear time-series tool. Med. Eng. Phys. 21(6–7):439–448, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Georgakis, A., L. K. Stergioulas, and G. Giakas. Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency. IEEE Trans. Biomed. Eng. 50(2):262–265, 2003.

    Article  CAS  PubMed  Google Scholar 

  13. Hagg, G. M. Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. J. Appl. Physiol. 73(3):1211–1217, 1992.

    CAS  PubMed  Google Scholar 

  14. Hornero, R., D. Abasolo, J. Escudero, and C. Gomez. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with Alzheimer’s disease. Phil. Trans. R. Soc. A 367(1887):317–336, 2009.

    Article  PubMed  Google Scholar 

  15. Hou, Y., J. M. Zurada, W. Karwowski, W. S. Marras, and K. Davis. Estimation of the dynamic spinal forces using a recurrent fuzzy neural network. IEEE Trans. Syst. Man Cybern. B 37(1):100–109, 2007.

    Article  Google Scholar 

  16. Hu, X., C. Miller, P. Vespa, and M. Bergsneider. Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals. Med. Eng. Phys. 30:631–639, 2008.

    Article  PubMed  Google Scholar 

  17. Huang, N. E., Z. Shen, S. R. Long, M. L. C. Wu, H. H. Shih, Q. N. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. Roy. Soc. Lond. Ser. A 454:903–995, 1998.

    Article  Google Scholar 

  18. Karlsson, S., J. Yu, and M. Akay. Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods. IEEE Trans. Biomed. Eng. 46:670–684, 1999.

    Article  CAS  PubMed  Google Scholar 

  19. Karwowski, W., A. Gaweda, W. S. Marras, K. Davis, J. Zurada, and D. Rodrick. A fuzzy relational rule network modeling of electromyographical activity of trunk muscles in manual lifting based on trunk angels, moments, pelvic tilt and rotation angles. Int. J. Ind. Ergon. 36(10):847–859, 2006.

    Article  Google Scholar 

  20. Katsev, S., and I. L’Heureux. Are Hurst exponents estimated from short or irregular time series meaningful? Comput. Geosci. 29:1085–1089, 2003.

    Article  Google Scholar 

  21. Koskinen, M., T. Seppanen, S. Tong, S. Mustola, and N. V. Thakor. Monotonicity of approximate entropy during transition from awareness to unresponsiveness due to propofol anesthetic induction. IEEE Trans. Biomed. Eng. 53(4):669–675, 2006.

    Article  PubMed  Google Scholar 

  22. Lei, M., Z. Z. Wang, and Z. J. Feng. Detection nonlinearity of action surface EMG signal. Phys. Lett. A 290:297–303, 2001.

    Article  CAS  Google Scholar 

  23. Linssen, W. H., D. F. Stegeman, E. M. Joosten, M. A. van’t Hof, R. A. Binkhorst, and S. L. Notermans. Variability and interrelationships of surface EMG parameters during local muscle fatigue. Muscle Nerve 16:849–856, 1993.

    Article  CAS  PubMed  Google Scholar 

  24. Liu, Y., M. Kankaanpaa, J. P. Zbilut, and C. L. Webber, Jr. EMG recurrence quantifications in dynamic exercise. Biol. Cybern. 90(5):337–348, 2004.

    Article  PubMed  Google Scholar 

  25. Lu, S., X. N. Chen, J. K. Kanters, I. C. Solomon, and K. H. Chon. Automatic selection of the threshold value r for approximate entropy. IEEE Trans. Biomed. Eng. 55(8):1966–1972, 2008.

    Article  PubMed  Google Scholar 

  26. MacIsaac, D. T., P. A. Parker, K. B. Englehart, and D. R. Rogers. Fatigue estimation with a multivariable myoelectric mapping function. IEEE Trans. Biomed. Eng. 53(4):694–700, 2006.

    Article  PubMed  Google Scholar 

  27. Merletti, R., M. Knaflitz, and C. Deluca. Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J. Appl. Physiol. 69:1810–1820, 1990.

    CAS  PubMed  Google Scholar 

  28. Nargol, A. V., A. P. Jones, P. J. Kelly, and C. G. Greenough. Factors in the reproducibility of electromyographic power spectrum analysis of lumbar paraspinal muscle fatigue. Spine 24(9):883–888, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Pincus, S. M. Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci. USA 88:2297–2301, 1991.

    Article  CAS  PubMed  Google Scholar 

  30. Pincus, S. M. Approximate entropy in cardiology. Herzschr. Elektrophys. 11:139–150, 2000.

    Article  Google Scholar 

  31. Pincus, S. M. Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disorders 8:430–440, 2006.

    Article  PubMed  Google Scholar 

  32. Pincus, S. M., and D. L. Keefe. Quantification of hormone pulsatility via an approximate entropy algorithm. Am. J. Physiol. Endocrinol. Metab. 262:E741–E754, 1992.

    CAS  Google Scholar 

  33. Radhakrishnan, N., and B. N. Gangadhar. Estimating regularity in epileptic seizure time-series. IEEE Eng. Med. Biol. Mag. 17(3):89–94, 1998.

    Article  CAS  PubMed  Google Scholar 

  34. Radhakrishnan, N., J. D. Wilson, C. Lowery, P. Murphy, and H. Eswaran. Testing for nonlinearity of the contraction segments in uterine electromyography. Int. J. Bifurcation Chaos Appl. Sci. Eng. 10:2785–2790, 2000.

    Article  Google Scholar 

  35. Ravier, P., O. Buttelli, R. Jennane, and P. Couratier. An EMG fractal indicator having different sensitivities to changes in force and muscle fatigue during voluntary static muscle contractions. J. Electromyogr. Kinesiol. 15:210–221, 2005.

    Article  PubMed  Google Scholar 

  36. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000.

    CAS  PubMed  Google Scholar 

  37. Rodrick, D., and W. Karwowski. Nonlinear dynamical behavior of surface electromyographical signals of biceps muscle under two simulated static work postures. Nonlinear Dynam. Psychol. Life Sci. 10:21–35, 2006.

    Google Scholar 

  38. Rossler, O. E. An equation for continuous chaos. Phys. Lett. A 57:397–398, 1976.

    Article  Google Scholar 

  39. Slack, P. S., and X. H. Ma. Determination of muscle fatigue using dynamically embedded signals. Proc. Inst. Mech. Eng. H 222(1):41–50, 2008.

    CAS  PubMed  Google Scholar 

  40. Stylianou, A. P., C. W. Luchies, D. E. Lerner, and G. W. King. The use of correlation integrals in the study of localized muscle fatigue of elbow flexors during maximal efforts. J. Electromyogr. Kinesiol. 15:437–443, 2005.

    Article  PubMed  Google Scholar 

  41. Swie, Y. W., K. Sakamoto, and Y. Shimizu. Chaotic analysis of electromyography signal at low back and lower limb muscles during forward bending posture. Electromyogr. Clin. Neurophysiol. 45:329–342, 2005.

    CAS  PubMed  Google Scholar 

  42. Webber, Jr., C. L., and J. P. Zbilut. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76(2):965–973, 1994.

    PubMed  Google Scholar 

  43. Webber, Jr., C. L., M. A. Schmidt, and J. M. Walsh. Influence of isometric loading on biceps EMG dynamics as assessed by linear and non-linear Tools. J. Appl. Physiol. 78(3):814–822, 1995.

    PubMed  Google Scholar 

  44. Xie, H. B., and Z. Z. Wang. Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis. Comput. Meth. Programs Biomed. 82(2):114–120, 2006.

    Article  Google Scholar 

  45. Yassierli, P. D., and M. A. Nussbaum. Utility of traditional and alternative EMG-based measures of fatigue during low-moderate level isometric efforts. J. Electromyogr. Kinesiol. 18:44–53, 2008.

    Article  CAS  PubMed  Google Scholar 

  46. Zbilut, J. P., and C. L. Webber, Jr. Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4):199–203, 1992.

    Article  Google Scholar 

  47. Zadeh, L. A. Fuzzy sets. Inform. Control 8:338–353, 1965.

    Article  Google Scholar 

Download references

Acknowledgments

The fApEn Matlab code will be free to anyone for research purpose if requested. This work is partially supported by the Hong Kong Research Grant Council (PolyU 5331/06E), The Hong Kong Polytechnic University (G-YX1F, J-BB69), The Natural Science Foundation of Jiangsu Province (BK2009198), and Jiangsu University (07JDG40), PR of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Bo Xie or Yong-Ping Zheng.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, HB., Guo, JY. & Zheng, YP. Fuzzy Approximate Entropy Analysis of Chaotic and Natural Complex Systems: Detecting Muscle Fatigue Using Electromyography Signals. Ann Biomed Eng 38, 1483–1496 (2010). https://doi.org/10.1007/s10439-010-9933-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9933-5

Keywords

Navigation