[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An efficient and collision-free hole-filling algorithm for orthodontics

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Hole filling of teeth and gums is an essential stage in orthodontics after segmentation. The patching mesh should keep the morphological features of generic teeth and gums while avoiding collision between two adjacent teeth. This paper presents an efficient hole-filling algorithm to reconstruct the missing part of teeth and gums. Our proposed method involves four necessary steps: boundary construction and projection, hole triangulation in 2D, back projection of vertices to 3D, and mesh fairing. By combining constrained Delaunay triangulation in 2D with back projection of vertices to 3D using mean value coordinates, we achieve high robustness of hole triangulation and a high-quality initial patching mesh. In addition, we propose an automatic method to control the deformation degree to avoid collision. Our experiments demonstrate that the proposed method can achieve satisfactory results, not only in morphology, but also in efficiency. The results are very similar to real teeth and gums and can meet the requirements of orthodontics in medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Attene, M.: A lightweight approach to repairing digitized polygon meshes. Vis. Comput. 26(11), 1393–1406 (2010)

    Article  Google Scholar 

  2. Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23(3), 630–634 (2004)

    Article  Google Scholar 

  3. Davis, J., Marschner, S., Garr, M., Levoy, M.: Filling holes in complex surfaces using volumetric diffusion. In: First International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 428–441 (2002)

    Chapter  Google Scholar 

  4. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186 (2005)

    Chapter  Google Scholar 

  7. George, P.L., Seveno, E.: The advancing-front mesh generation method revisited. Int. J. Numer. Methods Eng. 37(21), 3605–3619 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ju, T.: Robust repair of polygonal models. ACM Trans. Graph. 23(3), 888–895 (2004)

    Article  Google Scholar 

  9. Jun, Y.: A piecewise hole filling algorithm in reverse engineering. Comput. Aided Des. 37(2), 263–270 (2005)

    Article  Google Scholar 

  10. Liepa, P.: Filling holes in meshes. In: Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 200–205 (2003)

    Google Scholar 

  11. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)

    Article  Google Scholar 

  12. Shewchuk, J.: Triangle: engineering a 2d quality mesh generator and Delaunay triangulator. In: Applied Computational Geometry Towards Geometric Engineering, pp. 203–222 (1996)

    Chapter  Google Scholar 

  13. Shlens, J.: A tutorial on principal component analysis, Systems Neurobiology Laboratory, University of California at San Diego (2005)

  14. Sorkine, O., Cohen-Or, D.: Least-squares meshes. In: Proceedings of Shape Modeling Applications, pp. 191–199 (2004)

    Chapter  Google Scholar 

  15. Wang, L.C., Hung, Y.C.: Hole filling of triangular mesh segments using systematic grey prediction. Comput. Aided Des. 44(12), 1182–1189 (2012)

    Article  MathSciNet  Google Scholar 

  16. Wei, M., Wu, J., Pang, M.: An integrated approach to filling holes in meshes. In: International Conference on Artificial Intelligence and Computational Intelligence (AICI), vol. 3, pp. 306–310 (2010)

    Google Scholar 

  17. Wu, X., Wang, M., Han, B.: An automatic hole-filling algorithm for polygon meshes. Comput-Aided Des. Appl. 5(6), 889–899 (2008)

    Google Scholar 

  18. Yuan, T., Liao, W., Dai, N., Cheng, X., Yu, Q.: Single-tooth modeling for 3d dental model. Int. J. Biomed. Imaging 2010, 9:1–9:14 (2010)

    Article  Google Scholar 

  19. Zhao, W., Gao, S., Lin, H.: A robust hole-filling algorithm for triangular mesh. Vis. Comput. 23(12), 987–997 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Plan of Zhejiang Province (Grant No. 2011C13009), the National Natural Science Foundation of China (Grant Nos. 61272298, 60933007), and Zhejiang Provincial Natural Science Foundation of China (Grant No. Z1110154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, N., Fan, R., You, L. et al. An efficient and collision-free hole-filling algorithm for orthodontics. Vis Comput 29, 577–586 (2013). https://doi.org/10.1007/s00371-013-0820-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-013-0820-6

Keywords

Navigation