[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a real-time algorithm for computing the precise Hausdorff Distance (HD) between two planar freeform curves. The algorithm is based on an effective technique that approximates each curve with a sequence of G 1 biarcs within an arbitrary error bound. The distance map for the union of arcs is then given as the lower envelope of trimmed truncated circular cones, which can be rendered efficiently to the graphics hardware depth buffer. By sampling the distance map along the other curve, we can estimate a lower bound for the HD and eliminate many redundant curve segments using the lower bound. For the remaining curve segments, we read the distance map and detect the pixel(s) with the maximum distance. Checking a small neighborhood of the maximum-distance pixel, we can reduce the computation to considerably smaller subproblems, where we employ a multivariate equation solver for an accurate solution to the original problem. We demonstrate the effectiveness of the proposed approach using several experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lin, M.C., Gottschalk, S.: Collision detection between geometric models: a survey. In: Proc. of IMA Conference on Mathematics of Surfaces, pp. 37–56 (1998)

  2. Lin, M.C., Manocha, D.: Collision and proximity queries. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn., pp. 787–807. Chapman & Hall/CRC, London (2004)

    Google Scholar 

  3. Johnson, D.: Minimum distance queries for haptic rendering. PhD thesis, Computer Science Department, University of Utah (2005)

  4. Schneider, P., Eberley, D.: Geometric Tools for Computer Graphics. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  5. Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  6. Akenine-Möller, T., Hains, E., Hoffman, N.: Real-Time Rendering, 3rd edn. AK Peters, Wellesley (2008)

    Google Scholar 

  7. Gilbert, E., Johnson, D., Keerthi, S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE Trans. Robot. Autom. 4, 193–203 (1988)

    Article  Google Scholar 

  8. Lin, M.C., Canny, J.: A fast algorithm for incremental distance calculation. In: IEEE Int. Conf. Robot. Autom., Sacramento, CA, pp. 1008–1014 (1991)

  9. Chung, K., Wang, W.: Quick collision detection of polytopes in virtual environments. In: ACM Symp. on Virtual Reality Software and Technology, Hong Kong, pp. 125–131 (1996)

  10. Quinlan, S.: Efficient distance computation between non-convex objects. In: IEEE Int’l Conf. on Robotics and Automation, pp. 3324–3329 (1994)

  11. Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast distance queries using rectangular swept sphere volumes. In: IEEE Int’l Conf. on Robotics and Automation (2000)

  12. Sohn, K.A., Jüttler, B., Kim, M.-S., Wang, W.: Computing distances between surfaces using line geometry. In: Proc. of Pacific Graphics, pp. 236–245 (2002)

  13. Lennerz, C., Schomer, E.: Efficient distance computation for quadric curves and surfaces. In: Proc. of Geometric Modeling and Processing, pp. 60–69 (2002)

  14. Kim, K.J.: Minimum distance between a canal surface and a simple surface. Comput Aided Des. 35(10), 871–879 (2003)

    Article  Google Scholar 

  15. Rabl, M., Jüttler, B.: Fast distance computation using quadratically supported surfaces. In: Proc. of Computational Kinematics (CK 2009), pp. 141–148 (2009)

  16. Chen, X.-D., Yong, J.-H., Zheng, G.-Q., Paul, J.-C., Sun, J.-G.: Computing minimum distance between two implicit algebraic surfaces. Comput. Aided Des. 38(10), 1053–1061 (2006)

    Article  Google Scholar 

  17. Chen, X.-D., Chen, L., Wang, Y., Xu, G., Yong, J.-H.: Computing the minimum distance between Bezier curves. J. Comput. Appl. Math. 230(1), 294–310 (2009)

    Article  MathSciNet  Google Scholar 

  18. Elber, G., Grandine, T.: Hausdorff and minimal distances between parametric freeforms in R 2 and R 3. In: Chen, F., Jüttler, B. (eds.) Advances in Geometric Modeling and Processing, Procs. of the 5th Int’l Conf., GMP 2008, Hangzhou, China, April 23–25, 2008. Lecture Notes in Computer Science, vol. 4975, pp. 191–204. Springer, Berlin (2008)

    Chapter  Google Scholar 

  19. Atallah, M.: A linear time algorithm for the Hausdorff distance between convex polygons. Inf. Process. Lett. 17, 207–209 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  21. Jüttler, B.: Bounding the Hausdorff distance of implicitly defined and/or parametric curves. In: Mathematical methods in CAGD, Oslo 2000, pp. 1–10 (2000)

  22. Alt, H., Guibas, L.: Discrete geometric shapes: Matching, interpolation, and approximation. In: Handbook of Computational Geometry. Elsevier, Amsterdam (1999)

    Google Scholar 

  23. Alt, H., Scharf, L.: Computing the Hausdorff distance between sets of curves. In: Procs of the 20th European Workshop on Computational Geometry (EWCG), Seville, Spain, pp. 233–236 (2004)

  24. Alt, H., Scharf, L.: Computing the Hausdorff distance between curved objects. Int. J. Comput. Geom. Appl. 18(4), 307–320 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Llanas, B.: Efficient computation of the Hausdorff distance between polytopes by exterior random covering. Comput. Optim. Appl. 30, 161–194 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Tang, M., Lee, M., Kim, Y.J.: Interactive Hausdorff distance computation for general polygonal models. In: Proc. of SIGGRAPH’09. Computer graphics Annual Conference Series (2009)

  27. Barton, M., Hanniel, I., Elber, G., Kim, M.-S.: Precise Hausdorff distance computation between polygonal meshes. Computer Aided Geometric Design, accepted

  28. Rucklidge, W.: Efficient Visual Recognition using the Hausdorff Distance. Lecture Notes in Computer Science, vol. 1173. Springer, Berlin (1996)

    MATH  Google Scholar 

  29. Aichholzer, O., Aigner, W., Aurenhammer, F., Hackl, T., Oberneder, M., Jüttler, B.: Medial axis computation for planar free-form shapes. Comput. Aided Des. 41(5), 339–349 (2009)

    Article  Google Scholar 

  30. Hoff, K., Culver, T., Keyser, J., Lin, M.C., Manocha, D.: Fast computation of generalized Voronoi diagrams using graphic hardware. In: Proc. of SIGGRAPH’99. Computer Graphics Annual Conference Series, pp. 277–286 (1999)

  31. Eck, M., DeRose, T., Duchamp, T., Hoppey, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: ACM SIGGRAPH’95, Los Angeles, CA, pp. 173–182 (1995)

  32. Alliez, P., Gotsman, C.: Isotropic remeshing of surfaces: a local parametrization approach. In: Proc. Int. Meshing Roundtable, pp. 215–224 (2003)

  33. Manocha, D., Erikson, C.: GAPS: General and automatic polygonal simplification. In: Proc. of ACM Symposium on Interactive 3D Graphics, pp. 79–88 (1998)

  34. Sir, Z., Feichtinger, R., Jüttler, B.: Approximating curves and their offsets using biarcs and Pythagorean hodograph quintics. Comput. Aided Des. 38(6), 608–618 (2006)

    Article  Google Scholar 

  35. Preparata, F., Shamos, M.: Computational Geometry. Springer, New York (1985)

    Google Scholar 

  36. IRIT 10.0 User’s Manual, Technion, 2009. http://www.cs.technion.ac.il/~irit

  37. Elber, G., Kim, M.-S.: Geometric constraint solver using multivariate rational spline functions. In: Proc. of the Sixth ACM Symposium on Solid Modeling and Applications, pp. 1–10 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, YJ., Oh, YT., Yoon, SH. et al. Precise Hausdorff distance computation for planar freeform curves using biarcs and depth buffer. Vis Comput 26, 1007–1016 (2010). https://doi.org/10.1007/s00371-010-0477-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0477-3

Keywords

Navigation