[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Part-to-part morphing for planar curves

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a shape-morphing technique that interpolates a pair of 2D polygons or curves. Firstly, a user-guided feature point correspondence is introduced to associate similar parts between the source and target shapes, which allows user to control the correspondence results effectively and flexibly. Secondly, to fully capture the global and local motions of the shapes, we define a simple structure called a part figure to represent these movements in terms of the shape parts. The part figure representation is general and applicable to various part associations between the shapes. By interpolating the part figures of the shapes, the smooth transition of the global and local movements from the source to the target shape is generated, which results in in-between shape parts with least distortion. Then, the coherent intermediate shapes of the morphing sequence are formed from these intermediate shape parts. Experimental results show that the method can transform the source shape into the target shape as expected and generate natural and visually pleasing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alexa, M., Cohen-Or, D., Levin, D.: As-rigid-as-possible shape interpolation. In: SIGGRAPH ’00, pp. 157–164 (2000)

  2. Baxter, W., Barla, P., Anjyo, K.i.: Rigid shape interpolation using normal equations. In: NPAR ’08, pp. 59–64 (2008)

  3. Baxter 3rd, W.V., Barla, P., Anjyo, K.I.: Compatible embedding for 2D shape animation. TVCG 15(5), 867–879 (2009)

    Google Scholar 

  4. Carmel, E., Cohen-Or, D.: Warp-guided object space morphing. Vis. Comput. 13(9/10), 465–478 (1997)

    Google Scholar 

  5. Chen, Q., Tian, F., Seah, H., Wu, Z., Qiu, J., Konstantin, M.: DBSC-based animation enhanced with feature and motion: research articles. CAVW 17(3–4), 189–198 (2006)

    Google Scholar 

  6. Chetverikov, D., Szabo, Z.: A simple and efficient algorithm for detection of high curvature points in planar curves. In: Proceedings of 23rd Workshop of the Austrian Pattern Recognition Groups, pp. 175–184 (1999)

  7. Fekete, J.D., Érick Bizouarn, Éric Cournarie, Galas, T., Taillefer, F.: TicTacToon: a paperless system for professional 2d animation. In: SIGGRAPH ’95, pp. 79–90 (1995)

  8. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: SIGGRAPH ’97, pp. 209–216 (1997)

  9. Hahmann, S., Bonneau, G.P., Caramiaux, B., Cornillac, M.: Multiresolution morphing for planar curves. Computing 79(2), 197–209 (2007)

  10. Hsu, S.C., Lee, I.H.H.: Drawing and animation using skeletal strokes. In: SIGGRAPH ’94, pp. 109–118 (1994)

  11. van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)

    Google Scholar 

  12. Kaul, A., Rossignac, J.: Solid-interpolating deformations: construction and animation of pips. In: Eurographics ’91, pp. 493–505 (1991)

  13. Kort, A.: Computer aided inbetweening. In: NPAR ’02, pp. 125–132 (2002)

  14. Liu, D., Chen, Q., Yu, J., Gu, H., Tao, D., Seah, H.S.: Stroke correspondence construction using manifold learning. Comput. Graph. Forum 30, 25–34 (2011)

  15. Liu, L., Wang, G., Zhang, B., Guo, B., Shum, H.Y.: Perceptually based approach for planar shape morphing. In: PG ’04, pp. 111–120 (2004)

  16. Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least squares. TOG 25(3), 533–540 (2006)

    Article  Google Scholar 

  17. Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. PAMI 25(1), 116–125 (2003)

    Article  Google Scholar 

  18. Sederberg, T.W., Gao, P., Wang, G., Mu, H.: 2-D shape blending: an intrinsic solution to the vertex path problem. In: SIGGRAPH ’93, pp. 15–18 (1993)

  19. Sederberg, T.W., Greenwood, E.: A physically based approach to 2D shape blending. ACM Comput. Graph. 26(2), 25–34 (1992)

    Google Scholar 

  20. Shapira, M., Rappoport, A.: Shape blending using the star-skeleton representation. CGA 15(2), 44–50 (1995)

    Google Scholar 

  21. Surazhsky, V., Gotsman, C.: Intrinsic morphing of compatible triangulations. Int. J. Shape Model. 9(2), 191–201 (2003)

    Article  MATH  Google Scholar 

  22. Whited, B., Noris, G., Simmons, M., Sumner, R.W., Gross, M., Rossignac, J.: Betweenit: an interactive tool for tight inbetweening. Comput. Graph. Forum 29, 605–614 (2010)

    Article  Google Scholar 

  23. Wolberg, G.: Image morphing: a survey. Vis. Comput. 14(8/9), 360–372 (1998)

    Article  Google Scholar 

  24. Yang, W., Feng, J.: 2D shape morphing via automatic feature matching and hierarchical interpolation. Comput. Graph. 33, 414–423 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Natural Science Foundation of China (Nos. 61003189, 61170098), the Natural Science Foundation of Zhejiang Province (No. LY12F02025), the Science and Technology Agency projects of Zhejiang Province (Nos. 2012C33074, 2012R10041-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwu Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 15980 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Wang, X. & Wang, G. Part-to-part morphing for planar curves. Vis Comput 30, 919–928 (2014). https://doi.org/10.1007/s00371-014-0955-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-014-0955-0

Keywords

Navigation