Abstract
This paper presents an art-inspired optimization algorithm, which is called Stochastic Paint Optimizer (SPO). The SPO is a population-based optimizer inspired by the art of painting and the beauty of colors plays the main role in this algorithm. The SPO, as an optimization algorithm, simulates the search space as a painting canvas and applies a different color combination for finding the best color. Four simple color combination rules without the need for any internal parameter provide a good exploration and exploitation for the SPO. The performance of the algorithm is evaluated by twenty-three mathematical well-known benchmark functions, and the results are verified by a comparative study with recent well-studied algorithms. In addition, a set of IEEE Congress of Evolutionary Computation benchmark test functions (CEC-C06 2019) are utilized. On the other hand, the Wilcoxon test, as a non-parametric statistical test, is used to determine the significance of the results. Finally, to prove the practicability of the SPO, this algorithm is applied to four different structural design problems, known as challenging problems in civil engineering. The results of all these problems indicate that the SPO algorithm is able to provide very competitive results compared to the other algorithms.
Similar content being viewed by others
References
Kaveh A (2017) Advances in metaheuristic algorithms for optimal design of structures, 2nd edn. Springer, Switzerland
Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken
De Jong KA (1975) Analysis of the behavior of a class of genetic adaptive systems, Technical Report
Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution
Holland JH (1992) Adaptation in natural and artificial systems: an introduSPOry analysis with applications to biology, control, and artificial intelligence, MIT press.
Goldberg DE (2006) Genetic algorithms, Pearson Education India.
Yang X-S et al. (2013) Swarm intelligence and bio-inspired computation: theory and applications, Newnes.
Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39. https://doi.org/10.1109/MCI.2006.329691
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. IEEE. https://doi.org/10.1109/MHS.1995.494215
Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007
Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech 213(3):267–289. https://doi.org/10.1007/s00707-009-0270-4
Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111. https://doi.org/10.1016/j.advengsoft.2005.04.005
Kaveh A, Mahdavi VR (2014) Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 139:18–27. https://doi.org/10.1016/j.compstruc.2014.04.005
Rashedi E, Nezamabadi-Pour H, Saryazdi SJIS (2009) GSA: a gravitational search algorithm 179(13): 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
Van Laarhoven PJ, Aarts EH (1987) Simulated annealing. Simulated annealing: theory and applications. Springer, Berlin, pp 7–15
Li S et al (2020) Slime mould algorithm: a new method for stochastic optimization. Future Generation Comput Syst. https://doi.org/10.1016/j.future.2020.03.055
Kaveh A, Dadras Eslamlou A (2020.) Water strider algorithm: A new metaheuristic and applications. Structures, Elsevier, https://doi.org/10.1016/j.istruc.2020.03.033
Kahraman HT, Aras S, Gedikli E (2020) Fitness-distance balance (FDB): a new selection method for meta-heuristic search algorithms. Knowl-Based Syst 190:105169. https://doi.org/10.1016/j.knosys.2019.105169
Kaveh A, Talatahari S, Khodadadi N (2019) Hybrid invasive weed optimization-shuffled frog-leaping algorithm for optimal design of truss structures. Iran J Sci Technol Trans Civ Eng 2019:1–16. https://doi.org/10.3311/PPci.14576
Pijarski P, Kacejko P (2019) A new metaheuristic optimization method: the algorithm of the innovative gunner (AIG). Eng Opt 51(12):2049–2068. https://doi.org/10.1080/0305215X.2019.1565282
Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam (2020) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Computing, 2020: 1–29. https://doi.org/10.1007/s00500-020-04812-z
Mafarja M et al. Dragonfly algorithm: theory, literature review, and application in feature selection, in Nature-Inspired Optimizers. 2020, Springer, Berlin, pp 47–67. https://doi.org/10.1007/978-3-030-12127-3_4
Kaveh A, Dadras Eslamlou A (2020) Metaheuristic optimization algorithms in civil engineering: new applications. Springer, Berlin
Kaveh A, Ilchi Ghazaan M (2018) Meta-heuristic algorithms for optimal design of real-size structures. Springer, Berlin
Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. https://doi.org/10.1177%2F003754970107600201
Zaeimi M, Ghoddosian A (2020) Color harmony algorithm: an art-inspired metaheuristic for mathematical function optimization. Soft Comput 2020: 1–40. https://doi.org/10.1007/s00500-019-04646-4
Matsuda YJAS (1995) Color design 2(4):10
Tokumaru M, Muranaka N, Imanishi S (2002) Color design support system considering color harmony. In: 2002 IEEE world congress on computational intelligence. 2002 IEEE international conference on fuzzy systems. FUZZ-IEEE'02. Proceedings (Cat. No. 02CH37291). 2002. IEEE. https://doi.org/10.1109/FUZZ.2002.1005020
Cheng S, Shi Y (2011) Diversity control in particle swarm optimization. In: 2011 IEEE symposium on swarm intelligence. IEEE. https://doi.org/10.1109/SIS.2011.5952581
Wolpert DH, W.G.J.I.t.o.e.c. (1997) Macready, No free lunch theorems for optimization. 1(1): p. 67–82. https://doi.org/10.1109/4235.585893
Wool LE et al (2015) Salience of unique hues and implications for color theory. J Vis 15(2):10–10. https://doi.org/10.1167/15.2.10
Parkhurst C, Feller RL (1982) Who invented the color wheel? Color Res Appl 7(3):217–230. https://doi.org/10.1002/col.5080070302
Feisner EA (2006) Colour: how to use colour in art and design. Laurence King Publishing.
Westland S et al (2007) Colour harmony. Colour: Design Creativity 1(1):1–15
Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102. https://doi.org/10.1109/4235.771163
Digalakis JG, Margaritis KG (2001) On benchmarking functions for genetic algorithms. Int J Comput Math 77(4):481–506
Molga M, Smutnicki C (2005) Test functions for optimization needs. Test functions for optimization needs, 101.
Yang X-S Test problems in optimization. arXiv preprint arXiv:1008.0549, 2010.
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004
Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022
Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006
Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7
Price K et al (2018) The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Nanyang Technological University, Singapore
Rahman CM, Rashid TA (2019) Dragonfly algorithm and its applications in applied science survey. Comput Intell Neurosci. https://doi.org/10.1155/2019/9293617
Mohammed HM, Umar SU, Rashid TA (2019) A systematic and meta-analysis survey of whale optimization algorithm. Comput Intell Neurosci. https://doi.org/10.1155/2019/8718571
Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734. https://doi.org/10.1007/s00500-018-3102-4
Ahmed AM, Rashid TA, Saeed SAM (2020) Cat swarm optimization algorithm: a survey and performance evaluation. Comput Intell Neurosci. https://doi.org/10.1155/2020/4854895
Mirjalili S et al (2017) Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002
Van den Bergh F, Engelbrecht AP (2006) A study of particle swarm optimization particle trajeSPOries. Inf Sci 176(8):937–971. https://doi.org/10.1016/j.ins.2005.02.003
Wu S-J, Chow P-T (1995) Steady-state genetic algorithms for discrete optimization of trusses. Comput Struct 56(6):979–991. https://doi.org/10.1016/0045-7949(94)00551-D
Lee KS et al (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Opt 37(7):663–684. https://doi.org/10.1080/03052150500211895
Kalatjari VR, Talebpour MH (2017) An improved ant colony algorithm for the optimization of skeletal structures by the proposed sampling search space method. Periodica Polytechnica Civ Eng 61(2):232–243. https://doi.org/10.3311/PPci.9153
Sadollah A et al (2012) Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 102:49–63. https://doi.org/10.1016/j.compstruc.2012.03.013
Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112. https://doi.org/10.1016/j.compstruc.2014.03.007
Soh CK, Yang J (1996) Fuzzy controlled genetic algorithm search for shape optimization. J Comput Civ Eng 10(2):143–150. https://doi.org/10.1061/(ASCE)0887-3801(1996)10:2(143)
American Institute of Steel Construction (AISC) Manual of steel construction: allowable stress design. 1989.
Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system search algorithm 41(6):893–911. https://doi.org/10.1007/s00158-009-0462-5
Kaveh A, Khayatazad M (2012) A new meta-heuristic method: ray optimization. Comput Struct 112:283–294
Kaveh A, Mahdavi VR (2015) Colliding bodies optimization: extensions and applications. Springer, Berlin
Jalili S, Hosseinzadeh Y (2015) A cultural algorithm for optimal design of truss structures. Latin Am J Solids Struct 12(9):1721–1747. https://doi.org/10.1590/1679-78251547
Kaveh A, Talatahari S (2010) Optimum design of skeletal structures using imperialist competitive algorithm. 88(21–22): 1220–1229. https://doi.org/10.1016/j.compstruc.2010.06.011
Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures. 12(1): 382-393. https://doi.org/10.1016/j.asoc.2011.08.034
Kaveh A, Farhoudi N (2013) A new optimization method. Dolphin Echolocation 59:53–70. https://doi.org/10.1016/j.advengsoft.2013.03.004
Kaveh A, Bakhshpoori T (2016) An accelerated water evaporation optimization formulation for discrete optimization of skeletal structures. Comput Struct 177:218–228. https://doi.org/10.1016/j.compstruc.2016.08.006
Camp CV, Bichon BJ, Stovall SP (2005) Design of steel frames using ant colony optimization. J Struct Eng 131(3):369–379. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(369)
Degertekin SO (2008) Optimum design of steel frames using harmony search algorithm. Struct Multidisciplinary Opt 36(4):393–401. https://doi.org/10.1007/s00158-007-0177-4
Gholizadeh S, Davoudi H, Fattahi F (2017) Design of steel frames by an enhanced moth-flame optimization algorithm. Steel Compos Struct 24(1):129–140. https://doi.org/10.12989/scs.2017.24.1.129
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kaveh, A., Talatahari, S. & Khodadadi, N. Stochastic paint optimizer: theory and application in civil engineering. Engineering with Computers 38, 1921–1952 (2022). https://doi.org/10.1007/s00366-020-01179-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-020-01179-5