[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

This paper studies the construction of geometric integrators for nonholonomic systems. We develop a formalism for nonholonomic discrete Euler–Lagrange equations in a setting that permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Text in Mathematics, vol. 60. Springer, New York (1978)

    MATH  Google Scholar 

  • Bates, L., Śniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32(1), 99–115 (1992)

    Article  Google Scholar 

  • Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics Series, vol. 24. Springer, New York (2003)

    MATH  Google Scholar 

  • Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobenko, A.I., Suris, Y.B.: Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products. Lett. Math. Phys. 49, 79–93 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobenko, A.I., Suris, Y.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999b)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrijn, F., de León, M., Marrero, J.C., Martín de Diego, D.: Reduction of nonholonomic mechanical systems with symmetries. Rep. Math. Phys. 42, 25–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrijn, F., de León, M., Marrero, J.C., Martín de Diego, D.: Reduction of constrained systems with symmetries. J. Math. Phys. 40, 795–820 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Coste, A., Dazord, P., Weinstein, A.: Grupoïdes symplectiques. Publ. Dép. Math. Lyon A 2, 1–62 (1987)

    MathSciNet  Google Scholar 

  • Cortés, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Lecture Notes in Mathematics, vol. 1793. Springer, New York (2002)

    MATH  Google Scholar 

  • Cortés, J., Martínez, S.: Nonholonomic integrators. Nonlinearity 14, 1365–1392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Cortés, J., Martínez, E.: Mechanical control systems on Lie algebroids. IMA J. Math. Control. Inf. 21, 457–492 (2004)

    Article  MATH  Google Scholar 

  • Cortés, J., de León, M., Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids. Preprint math-ph/0512003 (2005)

  • de León, M., Martín de Diego, D.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37(7), 3389–3414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • de León, M., Marrero, J.C., Martín de Diego, D.: Mechanical systems with nonlinear constraints. Int. J. Teor. Phys. 36(4), 973–989 (1997)

    Google Scholar 

  • de León, M., Martín de Diego, D., Santamaría-Merino, A.: Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3), 1042–1064 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • de León, M., Marrero, J.C., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids. J. Phys. A: Math. Gen. 38, R241–R308 (2005)

    Article  MATH  Google Scholar 

  • Fedorov, Y.N.: A discretization of the nonholonomic Chaplygin sphere problem. SIGMA 3, 044–059 (2007)

    Google Scholar 

  • Fedorov, Y.N., Jovanovic, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Sci. 14(4), 341–381 (2004)

    MathSciNet  MATH  Google Scholar 

  • Fedorov, Y.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211–2241 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, Y.N., Zenkov, D.V.: Dynamics of the discrete Chaplygin sleigh. Discrete Contin. Dyn. Syst. Suppl. 258–267 (2005b)

    MathSciNet  Google Scholar 

  • Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002)

    MATH  Google Scholar 

  • Iglesias, D., Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids II: Construction of variational integrators (2007, in preparation)

  • Jalnapurkar, S.M., Leok, M., Marsden, J.E., West, M.: Discrete Routh reduction. J. Phys. A 39(19), 5521–5544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Rational Mech. Anal. 118, 113–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Kobilarov, M., Sukhatme, G.: Optimal control using nonholonomic integrators. In: 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 1832–1837. 10–14 April 2007

  • Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  • Leok, M.: Foundations of computational geometric mechanics, control and dynamical systems. Thesis, California Institute of Technology (2004). Available in http://www.math.lsa.umich.edu/~mleok

  • Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids. Nonlinearity 19(6), 1313–1348 (2006). Corrigendum: Nonlinearity 19(12), 3003–3004 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E.: Park city lectures on mechanics, dynamics and symmetry. In: Eliashberg, Y., Traynor, L. (eds.) Symplectic Geometry and Topology. IAS/Park City Math. Ser., vol. 7, pp. 335–430. AMS, Providence (1999)

    Google Scholar 

  • Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, New York (1999)

    MATH  Google Scholar 

  • Marsden, J.E., West, M.: Discrete Mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Pekarsky, S., Shkoller, S.: Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity 12, 1647–1662 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, J.E., Pekarsky, S., Shkoller, S.: Symmetry reduction of discrete Lagrangian mechanics on Lie groups. J. Geom. Phys. 36, 140–151 (1999b)

    Article  MathSciNet  Google Scholar 

  • Martínez, E.: Lagrangian Mechanics on Lie algebroids. Acta Appl. Math. 67, 295–320 (2001a)

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez, E.: Geometric formulation of Mechanics on Lie algebroids. In: Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999. Publicaciones de la RSME, vol. 2, pp. 209–222 (2001b)

  • Martínez, E.: Lie algebroids, some generalizations and applications. In: Proceedings of the XI Fall Workshop on Geometry and Physics, Oviedo, 2002. Publicaciones de la RSME, vol. 6, pp. 103–117 (2002)

  • McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • McLachlan, R., Scovel, C.: Open problems in symplectic integration. Fields Inst. Commun. 10, 151–180 (1996)

    MathSciNet  Google Scholar 

  • Mestdag, T.: Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework. J. Phys. A: Math. Gen. 38, 10157–10179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Mestdag, T., Langerock, B.: A Lie algebroid framework for nonholonomic systems. J. Phys. A: Math. Gen. 38, 1097–1111 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Moser, J., Veselov, A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139, 217–243 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Neimark, J., Fufaev, N.: Dynamics on Nonholonomic Systems. Translation of Mathematics Monographs, vol. 33. AMS, Providence (1972)

    Google Scholar 

  • Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman&Hall, London (1994)

    MATH  Google Scholar 

  • Saunders, D.: Prolongations of Lie groupoids and Lie algebroids. Houston J. Math. 30(3), 637–655 (2004)

    MathSciNet  MATH  Google Scholar 

  • Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups. Math. Notes 44, 810–819 (1989)

    MathSciNet  Google Scholar 

  • Weinstein, A.: Lagrangian mechanics and groupoids. Fields Inst. Commun. 7, 207–231 (1996)

    Google Scholar 

  • Zenkov, D., Bloch, A.M.: Invariant measures of nonholonomic flows with internal degrees of freedom. Nonlinearity 16, 1793–1807 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Iglesias.

Additional information

This work was partially supported by MEC (Spain) Grants MTM 2006-03322, MTM 2007-62478, MTM 2006-10531, project “Ingenio Mathematica” (i-MATH) No. CSD 2006-00032 (Consolider-Ingenio 2010) and S-0505/ESP/0158 of the CAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iglesias, D., Marrero, J.C., de Diego, D.M. et al. Discrete Nonholonomic Lagrangian Systems on Lie Groupoids. J Nonlinear Sci 18, 221–276 (2008). https://doi.org/10.1007/s00332-007-9012-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-007-9012-8

Keywords

Mathematics Subject Classification (2000)

Navigation