Abstract
This paper studies the construction of geometric integrators for nonholonomic systems. We develop a formalism for nonholonomic discrete Euler–Lagrange equations in a setting that permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).
Similar content being viewed by others
References
Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Text in Mathematics, vol. 60. Springer, New York (1978)
Bates, L., Śniatycki, J.: Nonholonomic reduction. Rep. Math. Phys. 32(1), 99–115 (1992)
Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics Series, vol. 24. Springer, New York (2003)
Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M.: Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136, 21–99 (1996)
Bobenko, A.I., Suris, Y.B.: Discrete Lagrangian reduction, discrete Euler-Poincaré equations, and semidirect products. Lett. Math. Phys. 49, 79–93 (1999a)
Bobenko, A.I., Suris, Y.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Commun. Math. Phys. 204, 147–188 (1999b)
Cantrijn, F., de León, M., Marrero, J.C., Martín de Diego, D.: Reduction of nonholonomic mechanical systems with symmetries. Rep. Math. Phys. 42, 25–45 (1998)
Cantrijn, F., de León, M., Marrero, J.C., Martín de Diego, D.: Reduction of constrained systems with symmetries. J. Math. Phys. 40, 795–820 (1999)
Coste, A., Dazord, P., Weinstein, A.: Grupoïdes symplectiques. Publ. Dép. Math. Lyon A 2, 1–62 (1987)
Cortés, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Lecture Notes in Mathematics, vol. 1793. Springer, New York (2002)
Cortés, J., Martínez, S.: Nonholonomic integrators. Nonlinearity 14, 1365–1392 (2001)
Cortés, J., Martínez, E.: Mechanical control systems on Lie algebroids. IMA J. Math. Control. Inf. 21, 457–492 (2004)
Cortés, J., de León, M., Marrero, J.C., Martínez, E.: Nonholonomic Lagrangian systems on Lie algebroids. Preprint math-ph/0512003 (2005)
de León, M., Martín de Diego, D.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37(7), 3389–3414 (1996)
de León, M., Marrero, J.C., Martín de Diego, D.: Mechanical systems with nonlinear constraints. Int. J. Teor. Phys. 36(4), 973–989 (1997)
de León, M., Martín de Diego, D., Santamaría-Merino, A.: Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3), 1042–1064 (2004)
de León, M., Marrero, J.C., Martínez, E.: Lagrangian submanifolds and dynamics on Lie algebroids. J. Phys. A: Math. Gen. 38, R241–R308 (2005)
Fedorov, Y.N.: A discretization of the nonholonomic Chaplygin sphere problem. SIGMA 3, 044–059 (2007)
Fedorov, Y.N., Jovanovic, B.: Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces. J. Nonlinear Sci. 14(4), 341–381 (2004)
Fedorov, Y.N., Zenkov, D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211–2241 (2005a)
Fedorov, Y.N., Zenkov, D.V.: Dynamics of the discrete Chaplygin sleigh. Discrete Contin. Dyn. Syst. Suppl. 258–267 (2005b)
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002)
Iglesias, D., Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids II: Construction of variational integrators (2007, in preparation)
Jalnapurkar, S.M., Leok, M., Marsden, J.E., West, M.: Discrete Routh reduction. J. Phys. A 39(19), 5521–5544 (2006)
Koiller, J.: Reduction of some classical non-holonomic systems with symmetry. Arch. Rational Mech. Anal. 118, 113–148 (1992)
Kobilarov, M., Sukhatme, G.: Optimal control using nonholonomic integrators. In: 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 1832–1837. 10–14 April 2007
Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2004)
Leok, M.: Foundations of computational geometric mechanics, control and dynamical systems. Thesis, California Institute of Technology (2004). Available in http://www.math.lsa.umich.edu/~mleok
Mackenzie, K.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)
Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete Lagrangian and Hamiltonian Mechanics on Lie groupoids. Nonlinearity 19(6), 1313–1348 (2006). Corrigendum: Nonlinearity 19(12), 3003–3004 (2006)
Marsden, J.E.: Park city lectures on mechanics, dynamics and symmetry. In: Eliashberg, Y., Traynor, L. (eds.) Symplectic Geometry and Topology. IAS/Park City Math. Ser., vol. 7, pp. 335–430. AMS, Providence (1999)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Texts in Applied Mathematics, vol. 17. Springer, New York (1999)
Marsden, J.E., West, M.: Discrete Mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)
Marsden, J.E., Pekarsky, S., Shkoller, S.: Discrete Euler–Poincaré and Lie–Poisson equations. Nonlinearity 12, 1647–1662 (1999a)
Marsden, J.E., Pekarsky, S., Shkoller, S.: Symmetry reduction of discrete Lagrangian mechanics on Lie groups. J. Geom. Phys. 36, 140–151 (1999b)
Martínez, E.: Lagrangian Mechanics on Lie algebroids. Acta Appl. Math. 67, 295–320 (2001a)
Martínez, E.: Geometric formulation of Mechanics on Lie algebroids. In: Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999. Publicaciones de la RSME, vol. 2, pp. 209–222 (2001b)
Martínez, E.: Lie algebroids, some generalizations and applications. In: Proceedings of the XI Fall Workshop on Geometry and Physics, Oviedo, 2002. Publicaciones de la RSME, vol. 6, pp. 103–117 (2002)
McLachlan, R., Perlmutter, M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)
McLachlan, R., Scovel, C.: Open problems in symplectic integration. Fields Inst. Commun. 10, 151–180 (1996)
Mestdag, T.: Lagrangian reduction by stages for non-holonomic systems in a Lie algebroid framework. J. Phys. A: Math. Gen. 38, 10157–10179 (2005)
Mestdag, T., Langerock, B.: A Lie algebroid framework for nonholonomic systems. J. Phys. A: Math. Gen. 38, 1097–1111 (2005)
Moser, J., Veselov, A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139, 217–243 (1991)
Neimark, J., Fufaev, N.: Dynamics on Nonholonomic Systems. Translation of Mathematics Monographs, vol. 33. AMS, Providence (1972)
Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman&Hall, London (1994)
Saunders, D.: Prolongations of Lie groupoids and Lie algebroids. Houston J. Math. 30(3), 637–655 (2004)
Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups. Math. Notes 44, 810–819 (1989)
Weinstein, A.: Lagrangian mechanics and groupoids. Fields Inst. Commun. 7, 207–231 (1996)
Zenkov, D., Bloch, A.M.: Invariant measures of nonholonomic flows with internal degrees of freedom. Nonlinearity 16, 1793–1807 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially supported by MEC (Spain) Grants MTM 2006-03322, MTM 2007-62478, MTM 2006-10531, project “Ingenio Mathematica” (i-MATH) No. CSD 2006-00032 (Consolider-Ingenio 2010) and S-0505/ESP/0158 of the CAM.
Rights and permissions
About this article
Cite this article
Iglesias, D., Marrero, J.C., de Diego, D.M. et al. Discrete Nonholonomic Lagrangian Systems on Lie Groupoids. J Nonlinear Sci 18, 221–276 (2008). https://doi.org/10.1007/s00332-007-9012-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-007-9012-8
Keywords
- Discrete Mechanics
- Nonholonomic Mechanics
- Lie groupoids
- Lie algebroids
- Reduction
- Nonholonomic momentum map