Abstract
We study an SIR epidemic model with a variable host population size. We prove that if the model parameters satisfy certain inequalities then competition between n pathogens for a single host leads to exclusion of all pathogens except the one with the largest basic reproduction number. It is shown that a knowledge of the basic reproduction numbers is necessary but not sufficient for determining competitive exclusion. Numerical results illustrate that these inequalities are sufficient but not necessary for competitive exclusion to occur. In addition, an example is given which shows that if such inequalities are not satisfied then coexistence may occur.
Similar content being viewed by others
References
Ackleh, A.S., Marshall, D.F., Fitzpatrick, B.G., Heatherly, H.E.: Survival of the fittest in a generalized logistic model. Math. Models Methods Appl. Sci. 9, 1379–1391 (1999)
Ackleh, A.S., Marshall, D.F., Heatherly, H.E.: Extinction in a generalized Lotka-Volterra predator–prey model. J. Appl. Math. Stochastic Anal. 13, 287–297 (2000)
Ahmad, S.: Extinction of species in nonautonomous Lotka-Volterra systems. Proc. Amer. Math. Soc. 127, 2905–2910 (1999)
Allen, L.J.S., Cormier, P.J.: Environmentally driven epizootics. Math. Biosci. 131, 51–80 (1996)
Anderson, R.M., May, R.M.: Population biology of infectious diseases. Part I. Nature 280, 361–367 (1979)
Anderson, R.M., May, R.M.: Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982)
Andreasen, V., Pugliese, A.: Pathogen coexistence induced by density dependent host mortality. J. Theor. Biol. 177, 159–165 (1995)
Beverton, R.J.H., Holt, S.J.: On the dynamics of exploited fish population. Fishery Investigations Ser. 2, 19, London: H.M.S.O 1957
Brauer, F.: Models for the spread of universally fatal diseases. J. Math. Biol. 28, 451–462 (1990)
Bremermann, H.J., Pickering, J.: A game-theoretical model of parasite virulence. J. Theor. Biol. 100, 411–426 (1983)
Bremermann, H.J., Thieme, H.R.: A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–190 (1989)
Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistence systems. Proc. Am. Math. Soc. 96, 425–430 (1986)
Butler, G., Waltman, P.: Persistence in dynamical systems. J. Differential Eqns. 63, 255–263 (1986)
Castillo-Chavez, C., Huang, W., Li, J.: Competitive exclusion in gonorrhea models and other sexually transmitted diseases. SIAM J. Appl. Math. 56, 494–508 (1996)
Castillo-Chavez, C., Huang, W., Li, J.: Competitive exclusion and coexistence of multiple strains in an SIS STD model. SIAM J. Appl. Math. 59, 1790–1811 (1999)
Castillo-Chavez, C., Velasco-Hernández, J.X.: On the relationship between evolution of virulence and host demography. J. Theor. Biol. 192, 437–444 (1998)
Feng, Z., Velasco-Hernández, J.X.: Competitve exclusion in a vector–host model for the dengue fever. J. Math. Biol. 35, 523–544 (1997)
Hochberg, M.E., Holt, R.D.: The coexistence of competing parasites I. The role of cross-species infection. Amer. Nat. 136, 517–541 (1990)
Levin, S.A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Amer. Nat. 104, 413–423 (1970)
Levin, S.A., Pimentel, D.: Selection of intermediate rates increase in parasite–host systems. Amer. Nat. 117, 308–315 (1981)
May, R.M.: Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973
May, R.M., Nowak, M.A.: Superinfection, metapopulation dynamics, and the evolution of virulence. J. Theor. Biol. 170, 95–114 (1994)
May, R.M., Nowak, M.A.: Coinfection and the evolution of parasite virulence. Proc. R. Soc. London B 261, 209–215 (1995)
Mosquera, J., Adler, F.R.: Evolution of virulence: a unifed framework for coinfection and superinfection. J. Theor. Biol. 195, 293–313 (1998)
Maynard Smith, J.: The Evolution of Sex. Cambridge University Press, Cambridge, UK, 1978
Montes de Oca, F., Zeeman, M.L.: Extinction in nonautonomous competitive Lotka-Volterra systems. Proc. Amer. Math. Soc. 124, 3677–3687 (1996)
Nowak, M.A., May, R.M.: Superinfection and the evolution of parasite virulence. Proc. R. Soc. London B 255, 81–89 (1994)
Pugliese, A.: Population models for diseases with no recovery. J. Math. Biol. 28, 65–82 (1990)
Ricker, W.E.: Stock and recruitment. J. Fish Res. Bd. Canada 11, 559–623 (1954)
Smith, H.L., Waltman, P.: The Theory of the Chemostat. Cambridge University Press, Cambridge, UK., 1995
Smith, H.L., Zhao, X.-Q.: Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete Contin. Dyn. Syst. Ser. B 1, 183–191 (2001)
van Baalen, M., Sabelis, M.W.: The dynamics of multiple infection and the evolution of virulence. Amer. Nat. 146, 881–910 (1995)
Zeeman, M.L.: Extinction in competitive Lotka-Volterra systems. Proc. Amer. Math. Soc. 123, 87–96 (1995)
Zhou, J., Hethcote, H.W.: Population size dependent incidence in models for diseases without immunity. J. Math. Biol. 32, 809–834 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ackleh, A., Allen, L. Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size. J. Math. Biol. 47, 153–168 (2003). https://doi.org/10.1007/s00285-003-0207-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00285-003-0207-9