[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor-recruited CD11b myeloid cells, including myeloid-derived suppressor cells, play a significant role in tumor progression, as these cells are involved in tumor-induced immune suppression and tumor neovasculogenesis. On the other hand, the tumor-infiltrated CD11b myeloid cells could potentially be a source of immunostimulatory antigen-presenting cells (APCs), since most of these cells represent common precursors of both dendritic cells and macrophages. Here, we investigated the possibility of generating mature APCs from tumor-infiltrated CD11b myeloid cells. We demonstrate that in vitro exposure of freshly excised mouse tumors to DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (decitabine, AZA) results in selective elimination of tumor cells, but, surprisingly it also enriches CD45+ tumor-infiltrated cells. The majority of “post-AZA” surviving CD45+ tumor-infiltrated cells were represented by CD11b myeloid cells. A culture of isolated tumor-infiltrated CD11b cells in the presence of AZA and GM-CSF promoted their differentiation into mature F4/80/CD11c/MHC class II-positive APCs. These tumor-derived myeloid APCs produced substantially reduced amounts of immunosuppressive (IL-13, IL-10, PGE2), pro-angiogenic (VEGF, MMP-9) and pro-inflammatory (IL-1beta, IL-6, MIP-2) mediators than their precursors, freshly isolated tumor-infiltrated CD11b cells. Vaccinating naïve mice with ex vivo generated tumor-derived APCs resulted in the protection of 70% mice from tumor outgrowth. Importantly, no loading of tumor-derived APC with exogenous antigen was needed to stimulate T cell response and induce the anti-tumor effect. Collectively, our results for the first time demonstrate that tumor-infiltrated CD11b myeloid cells can be enriched and differentiated in the presence of DNA demethylating agent 5-aza-2′-deoxycytidine into mature tumor-derived APCs, which could be used for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  2. Balkwill F, Charles KA, Mantovani A (2005) Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7(3):211–217

    Article  PubMed  CAS  Google Scholar 

  3. Murdoch C, Muthana M, Coffelt SB (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    Article  PubMed  CAS  Google Scholar 

  4. Yang L, DeBusk L, Fukuda K et al (2004) Expansion of myeloid immune suppressor Gr+ CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6(4):409–421

    Article  PubMed  CAS  Google Scholar 

  5. Grunewald M, Avraham I, Dor Y et al (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124(1):175–189

    Article  PubMed  CAS  Google Scholar 

  6. Ahn GO, Brown JM (2008) Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells. Cancer Cell 13(3):193–205

    Article  PubMed  CAS  Google Scholar 

  7. Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827

    Article  PubMed  CAS  Google Scholar 

  8. Hiratsuka S, Watanabe A, Aburatani H, Maru Y (2007) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastases. Nat Cell Biol 8(12):1369–1375

    Article  CAS  Google Scholar 

  9. Saio M, Radoja S, Marino M, Frey AB (2001) Tumor-infiltrating macrophages induce apoptosis in activated CD8(+) T cells by a mechanism requiring cell contact and mediated by both the cell-associated form of TNF and nitric oxide. J Immunol 167(10):5583–5593

    PubMed  CAS  Google Scholar 

  10. Rodriguez PC, Quiceno DG, Zabaleta J et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849

    Article  PubMed  CAS  Google Scholar 

  11. Kusmartsev S, Gabrilovich D (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174(8):4880–4891

    PubMed  CAS  Google Scholar 

  12. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51

    Article  PubMed  CAS  Google Scholar 

  13. Eruslanov E, Kaliberov S, Daurkin I et al (2009) Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 182(12):7548–7557

    Article  PubMed  CAS  Google Scholar 

  14. Zhang B, Bowerman NB, Salama JK et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204(1):49–55

    Article  PubMed  CAS  Google Scholar 

  15. Talmadge J, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26(3–4):373–400

    Article  PubMed  Google Scholar 

  16. Kusmartsev S, Gabrilovich D (2006) Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 55(3):237–245

    Article  PubMed  Google Scholar 

  17. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117(5):1155–1166

    Article  PubMed  CAS  Google Scholar 

  18. Nefedova Y, Huang M, Kusmartsev S et al (2004) Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172(1):464–474

    PubMed  CAS  Google Scholar 

  19. Gabrilovich D, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  PubMed  CAS  Google Scholar 

  20. Sombroek CC, Stam AGM, Masterson AJ et al (2002) Prostanoids play a major role in the primary tumor-induced inhibition of dendritic cell differentiation. J Immunol 168(9):4333–4343

    PubMed  CAS  Google Scholar 

  21. Sharma S, Stolina M, Yang SC et al (2003) Tumor cyclooxygenase 2-dependent suppression of dendritic cell function. Clin Cancer Res 9:961–968

    PubMed  CAS  Google Scholar 

  22. Talmadge J, Hood K, Zobel L, Shafer L, Coles M, Toth B (2007) Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion. Int Immunopharmacol 7(2):140–151

    Article  PubMed  CAS  Google Scholar 

  23. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67(9):4507–4513

    Article  PubMed  CAS  Google Scholar 

  24. Cheng P, Corzo C, Luetteke N et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205(10):2235–2249

    Article  PubMed  CAS  Google Scholar 

  25. Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123(1):8–13

    Article  PubMed  CAS  Google Scholar 

  26. Mantovani A, Schioppa T, Porta C, Allavena P, Antonio Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25(3):315–322

    Article  PubMed  Google Scholar 

  27. Biswas SK, Gangi L, Paul S et al (2005) A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107(5):2112–2122

    Article  PubMed  CAS  Google Scholar 

  28. Wang D, Dubois RN (2006) Prostaglandins and cancer. Gut 55(1):115–122

    Article  PubMed  CAS  Google Scholar 

  29. Tai HH, Cho H, Tong M, Ding Y (2006) NAD+-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr Pharm Des 12(8):955–962

    Article  PubMed  CAS  Google Scholar 

  30. Kusmartsev S, Gabrilovich D (2002) Immature myeloid cells and cancer-associated immune suppression. Cancer Immunol Immunother 51(2):293–298

    Article  PubMed  CAS  Google Scholar 

  31. Sinha P, Clements VK, Miller S, Ostrand-Rosenberg S (2005) Tumor immunity: a balancing act between T cell activation, macrophage activation and tumor-induced immune suppression. Cancer Immunol Immunother 54(11):1137–1142

    Article  PubMed  CAS  Google Scholar 

  32. Fu YX, Watson GA, Kasahara M, Lopez DM (1991) The role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. I. Induction of regulatory macrophages in normal mice by the in vivo administration of rGM-CSF. J Immunol 146(2):783–789

    PubMed  CAS  Google Scholar 

  33. Young MRI, Wright MA, Matthews JP, Malik I, Prechel M (1996) Suppression of T cell proliferation by tumor-induced granulocyte-macrophage progenitor cells producing transforming growth factor-β and nitric oxide. J Immunol 156(5):1916–1921

    PubMed  CAS  Google Scholar 

  34. Bronte V, Chappell DB, Apolloni E et al (1999) Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162(10):5728–5737

    PubMed  CAS  Google Scholar 

  35. Kusmartsev S, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 co-stimulation. J Immunol 165(2):779–785

    PubMed  CAS  Google Scholar 

  36. Gabrilovich D, Velders MP, Sotomayor EM, Kast WM (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J Immunol 166(9):5398–5406

    PubMed  CAS  Google Scholar 

  37. Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102(6):2138–2145

    Article  PubMed  CAS  Google Scholar 

  38. Liu Y, Van Ginderachter J, Brys L, De Baetselier P, Raes G, Geldhof A (2003) Nitric oxide-independent CTL suppression during tumor progression: association with arginase-producing (M2) myeloid cells. J Immunol 170(10):5064–5074

    PubMed  CAS  Google Scholar 

  39. Rodriguez PC, Hernandez CP, David Quiceno D et al (2005) Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202(7):931–939

    Article  PubMed  CAS  Google Scholar 

  40. Setiadi AF, Omilusik K, David MD et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68(7):9601–9607

    Article  PubMed  CAS  Google Scholar 

  41. Villagra A, Cheng F, Wang HW et al (2008) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10(1):92–100

    Article  PubMed  CAS  Google Scholar 

  42. Chang YC, Chen TC, Lee CT et al (2008) Epigenetic control of MHC class II expression in tumor-associated macrophages by decoy receptor 3. Blood 111(10):5054–5063

    Article  PubMed  CAS  Google Scholar 

  43. Guo ZS, Hong JA, Irvine KR et al (2006) De novo induction of a cancer/testis antigen by 5-aza-2′-deoxycytidine augments adoptive immunotherapy in a murine tumor model. Cancer Res 66(2):1105–1113

    Article  PubMed  CAS  Google Scholar 

  44. Fonsatti E, Nicolay HJ, Sigalotti L et al (2007) Functional up-regulation of human leukocyte antigen class I antigens expression by 5-aza-2′-deoxycytidine in cutaneous melanoma: immunotherapeutic implications. Clin Cancer Res 13(11):3333–3338

    Article  PubMed  CAS  Google Scholar 

  45. Kozar K, Kamiński R, Switaj T et al (2003) Interleukin 12-based immunotherapy improves the antitumor effectiveness of a low-dose 5-Aza-2′-deoxycitidine treatment in L1210 leukemia and B16F10 melanoma models in mice. Clin Cancer Res 9(8):3124–3133

    PubMed  CAS  Google Scholar 

  46. Preynat-Seauve O, Schuler P, Contassot E, Beermann F, Huard B, French LE (2006) Tumor-infiltrating dendritic cells are potent antigen-presenting cells able to activate T cells and mediate tumor rejection. J Immunol 176(1):61–67

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Lisa Williams for assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Kusmartsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daurkin, I., Eruslanov, E., Vieweg, J. et al. Generation of antigen-presenting cells from tumor-infiltrated CD11b myeloid cells with DNA demethylating agent 5-aza-2′-deoxycytidine. Cancer Immunol Immunother 59, 697–706 (2010). https://doi.org/10.1007/s00262-009-0786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0786-4

Keywords

Navigation