[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

PCR Primers with Enhanced Specificity for Nematode-Trapping Fungi (Orbiliales)

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nematode-trapping fungi, a monophyletic lineage within the Orbiliales (Ascomycota), use specialized structures to capture and consume nematodes in soil, leaf litter, and other substrates. These fungi have been studied both because of their unique predatory life history and because they are potential control agents of important plant- and animal-parasitic nematodes. Ecological studies of nematode-trapping fungi have primarily used culture-based methods, but molecular detection techniques are now available and should be useful for studying this group. We developed Orbiliales-specific PCR primers for the ITS and 28s rDNA to directly detect nematode-trapping fungi without culturing and also to screen fungal isolates for phylogenetic placement in the Orbiliales. We used these primers to selectively amplify, clone, and sequence Orbiliales DNA extracted from soil, litter, and wood, and we compared the results of molecular detection with those obtained using a culture-based method. Of the eight species of nematode-trapping Orbiliales detected with the culture-based assay, only three were detected with PCR. The molecular assay, however, detected 18 species of uncultured Orbiliales, many of which are closely related to nematode-trapping fungi and fungal parasites of nematode eggs. Our results suggest that the combined use of Orbiliales-specific primers and culture-based techniques may benefit future studies of nematophagous fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Abiko S, Saikawa M, Ratnawati (2005) Capture of mites and rotifers by four strains of Dactylella gephyropaga known as a nematophagous hyphomycete. Mycoscience 46:22–26

    Article  Google Scholar 

  2. Ahrén D, Faedo M, Rajastiekar B, Tunlid A (2004) Low genetic diversity among isolates of the nematode-trapping fungus Duddingtonia flagrans: evidence for recent worldwide dispersion from a single common ancestor. Mycol Res 108:1205–1214

    Article  PubMed  CAS  Google Scholar 

  3. Ahrén D, Ursing B, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiol Lett 158:179–184

    Article  PubMed  Google Scholar 

  4. Allen TR, Millar T, Berch SM, Berbee ML (2003) Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytol 160:255–272

    Article  CAS  Google Scholar 

  5. Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18s rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36–47

    Article  PubMed  CAS  Google Scholar 

  6. Arnold EA, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99:185–206

    Article  PubMed  CAS  Google Scholar 

  7. Bailey F, Gray NF (1989) The comparison of isolation techniques for nematophagous fungi from soil. Ann Appl Bio 114:125–132

    Article  Google Scholar 

  8. Barron GL (1977) The nematode-destroying fungi. Canadian Biological, Guelph, pp 1–140

    Google Scholar 

  9. Barron GL (1990) A new predatory hyphomycete capturing copepods. Can J Bot 68:691–696

    Article  Google Scholar 

  10. Bidartondo MI, Gardes M (2005) Fungal diversity in molecular terms: profiling, identification, and quantification from the environment. In: Dighton JJ, White F, Oudemans P (eds) The Fungal Community, 3rd edition. CRC, New York, pp 215–239

    Google Scholar 

  11. Borneman J, Hartin RJ (2000) PCR primers that amplify fungal rRNA genes from environmental samples. Appl Environ Microbiol 6:4356–4360

    Article  Google Scholar 

  12. Chen J, Xu L-L, Liu B, Liu X-Z (2007) Taxonomy of the Dactylella complex and Vermispora I. Generic concepts based on morphology and ITS sequence data. Fungal Divers 26:73–83

    CAS  Google Scholar 

  13. Chen J, Xu L-L, Liu B, Liu X-Z (2007) Taxonomy of the Dactylella complex and Vermispora III. A new genus Brachyphoris and revision of Vermispora. Fungal Divers 26:127–142

    Google Scholar 

  14. Chenna R, Sugawara H, Koide T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  PubMed  CAS  Google Scholar 

  15. Dixon SM (1952) Predacious fungi from rotten wood. Trans Br Mycol Soc 35:144–148

    Google Scholar 

  16. Drechsler C (1934) Organs of capture in some fungi preying on nematodes. Mycologia 26:135–144

    Article  Google Scholar 

  17. Drechsler C (1936) A fusarium-like species of Dactylella capturing and consuming testaceous rhizopods. J Wash Acad Sci 26:397–404

    Google Scholar 

  18. Drechsler C (1943) A new nematode-capturing Dactylella and several related hyphomycetes. Mycologia 35:339–362

    Article  Google Scholar 

  19. Drechsler C (1944) A species of Arthrobotrys that captures springtails. Mycologia 36:382–399

    Article  Google Scholar 

  20. Drechsler C (1952) Another nematode-strangulating Dactylella and some related hyphomycetes. Mycologia 4:533–556

    Google Scholar 

  21. Drechsler C (1962) Two additional species of Dactylella parasitic on Pythium oospores. Sydowia 15:94–96

    Google Scholar 

  22. Drechsler C (1963) A slender-spored Dactylella parasitic on Pythium oospores. Phytopathology 53:993–994

    Google Scholar 

  23. Duddington CL (1951) The ecology of predacious fungi I. Preliminary survey. Trans Br Mycol Soc 34:322–331

    Article  Google Scholar 

  24. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  25. Gray NF (1983) Ecology of nematophagous fungi: Panagrellus redivivus as the target organism. Plant Soil 73:293–297

    Article  Google Scholar 

  26. Gray NF (1984) Ecology of nematophagous fungi: Methods of collection, isolation and maintenance of predatory and endoparasitic fungi. Mycopathologia 86:143–153

    Article  Google Scholar 

  27. Gray NF (1985) Ecology of nematophagous fungi: Effect of soil moisture, organic matter, pH and nematode density on distribution. Soil Biol and Biochem 17:499–507

    Article  Google Scholar 

  28. Hagedorn G, Scholler M (1999) A reevaluation of predatory orbiliaceous fungi I Phylogenetic analysis using rDNA sequence data. Sydowia 51:27–48

    Google Scholar 

  29. Hopple J, Vilgayls R (1994) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107

    Article  CAS  Google Scholar 

  30. Jaffee BA, Tedford EC, Muldoon AE (1993) Tests for density-dependent parasitism of nematodes by trapping and endoparasitic fungi. Biol Control 3:329–336

    Article  Google Scholar 

  31. Jaffee BA, Strong DR, Muldoon AE (1996) Nematode-trapping fungi of a natural shrubland: Tests for food chain involvement. Mycologia 88:554–564

    Article  Google Scholar 

  32. Jaffee BA, Muldoon AE (1997) Suppression of the root-knot nematode Meloidogyne javanica by alginate pellets containing the nematophagous fungi Hirsutella rhossiliensis, Monacrosporium cionopagum, and M. ellipsosporum. Biocontrol Sci Technol 7:203–217

    Article  Google Scholar 

  33. Jaffee BA (1998) Susceptibility of a cyst and a root-knot nematode to three nematode-trapping fungi. Fundam Appl Nematol 21:695–703

    Google Scholar 

  34. Jaffee BA, Barstow JL, Strong DR (2007) Suppression of nematodes in a coastal grassland soil. Biol Fertil Soils 44:19–26

    Article  Google Scholar 

  35. Juniper AJ (1957) Dung as a source of predacious fungi. Trans Br Mycol Soc 40:346–348

    Google Scholar 

  36. Li SD, Miao ZQ, Zhang YH, Liu X-Z (2003) Monacrosporium janus sp nov, a new nematode-trapping hyphomycete parasitizing sclerotia and hyphae of Sclerotinia sclerotium. Mycol Res 107:888–894

    Article  PubMed  Google Scholar 

  37. Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ (2005) Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia 97:1034–1046

    Article  PubMed  CAS  Google Scholar 

  38. Linford MP, Yap F, Oliveira JM (1938) Reduction of soil populations of the root-knot nematode during decomposition of organic matter. Soil Sci 45:127–141

    Article  Google Scholar 

  39. Liou GY, Tzean SS (1997) Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 89:876–884

    Article  CAS  Google Scholar 

  40. Liu X-Z, Gao RH, Zhang KQ, Cao L (1996) Dactylella tenuifusaria sp nov, a rhizopod-capturing hyphomycete. Mycol Res 100:236–238

    Article  Google Scholar 

  41. Lynch MDJ, Thorn RG (2006) Diversity of basidiomycetes in Michigan agricultural soils. Appl Environ Microbiol 72:7050–7056

    Article  PubMed  CAS  Google Scholar 

  42. Maddison WP, Maddison DR (2006) Mesquite: A modular system for evolutionary analysis, Version 1.11. http://mesquiteprojectorg

  43. Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562–563

    Article  PubMed  CAS  Google Scholar 

  44. Meyer SLF, Carta LK, Rehner SA (2005) Morphological variability and molecular phylogeny of the nematophagous fungus Monacrosporium drechsleri. Mycologia 97:405–415

    Article  PubMed  CAS  Google Scholar 

  45. Morton CO, Hirsch PR, Kerry BR (2004) Infection of plant-parasitic nematodes by nematophagous fungi—a review of the application of molecular biology to understand infection processes and to improve biological control. Nematology 6:161–170

    Article  CAS  Google Scholar 

  46. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  CAS  Google Scholar 

  47. Olatinwo R, Yin B, Becker JO, Borneman J (2006a) Suppression of the plant-parasitic nematode Heterodera schachtii by the fungus Dactylella oviparasitica. Phytopathology 96:111–114

    Article  PubMed  Google Scholar 

  48. Olatinwo R, Borneman J, Becker JO (2006b) Induction of beet-cyst nematode suppressiveness by the fungi Dactylella oviparasitica and Fusarium oxysporum in field microplots. Phytopathology 96:855–859

    Article  PubMed  Google Scholar 

  49. Olsson S, Persson Y (1994) Transfer of phosphorus from Rhizoctonia solani to the mycoparasite Arthrobotrys oligospora. Mycol Res 98:1065–1068

    Article  Google Scholar 

  50. Persson Y, Erland S, Jansson HB (1996) Identification of the nematode-trapping fungi using RFLP analysis of the PCR-amplified ITS region of ribosomal DNA. Mycol Res 100:531–534

    Article  CAS  Google Scholar 

  51. Pfister DH (1994) Orbilia fimicola, a nematophagous discomycete and its Arthrobotrys anamorph. Mycologia 86:451–453

    Article  Google Scholar 

  52. Pfister DH, Liftik ME (1995) Two Arthrobotrys anamorphs from Orbilia auricolor. Mycologia 87:684–688

    Article  Google Scholar 

  53. Pfister DH (1997) Castor, Pollux, and life histories of fungi. Mycologia 89:1–23

    Article  Google Scholar 

  54. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana, Totowa, pp 365–386

    Google Scholar 

  55. Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  PubMed  CAS  Google Scholar 

  56. Scholler M, Hagedorn G, Rubner A (1999) A reevaluation of predatory orbiliaceous fungi II. A new generic concept. Sydowia 51:89–113

    Google Scholar 

  57. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847–863

    Article  PubMed  CAS  Google Scholar 

  58. Stirling GR, Mankau R (1978) Dactylella oviparasitica, a new fungal parasite of Meloidogyne eggs. Mycologia 70:774–783

    Article  Google Scholar 

  59. Stirling GR, Mankau R (1979) Mode of parasitism of Meloidogyne and other nematode eggs by Dactylella oviparasitica. J Nematol 11:283–288

    Google Scholar 

  60. Stirling GR, McKenry MV, Mankau R (1979) Biological control of root-knot nematodes (Meloidogyne spp) on peach. Phytopathology 69:806–809

    Article  Google Scholar 

  61. Swofford DL (2001) PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10. Sinauer, Sunderland, MA

    Google Scholar 

  62. Tzean SS, Estey RH (1978) Nematode-trapping fungi as mycopathogens. Phytopathology 68:1266–1270

    Article  Google Scholar 

  63. Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JPW (2002) Extensive fungal diversity in plant roots. Science 295:2051

    Article  PubMed  Google Scholar 

  64. White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  65. Wolstrup J (1996) Towards a practical biological control of parasitic nematodes in domestic animals. J Nematol 28:129–132

    PubMed  CAS  Google Scholar 

  66. Yang Y, Yang E, An Z, Liu Z (2007) Evolution of nemtode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. PNAS 104:8379–8384

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ole Becker and James Borneman for providing cultures of Brachyphoris oviparasitica for 28s sequencing. David M. Rizzo generously provided laboratory space and equipment. UC Bodega Marine Laboratory and Reserve provided a travel grant for B. Jaffee. Antonio Izzo provided valuable advice during primer development. We thank Donald Pfister and two anonymous reviewers for useful comments on previous drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.E., Jaffee, B.A. PCR Primers with Enhanced Specificity for Nematode-Trapping Fungi (Orbiliales). Microb Ecol 58, 117–128 (2009). https://doi.org/10.1007/s00248-008-9453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9453-0

Keywords

Navigation