[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Every group is a maximal subgroup of a naturally occurring free idempotent generated semigroup

  • RESEARCH ARTICLE
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

The study of the free idempotent generated semigroup IG(E) over a biordered set E has recently received a deal of attention. Let G be a group, let \(n\in\mathbb{N}\) with n≥3 and let E be the biordered set of idempotents of the wreath product \(G\wr \mathcal{T}_{n}\). We show, in a transparent way, that for eE lying in the minimal ideal of \(G\wr\mathcal{T}_{n}\), the maximal subgroup of e in IG(E) is isomorphic to G.

It is known that \(G\wr\mathcal{T}_{n}\) is the endomorphism monoid End F n (G) of the rank n free G-act F n (G). Our work is therefore analogous to that of Brittenham, Margolis and Meakin for rank 1 idempotents in full linear monoids. As a corollary we obtain the result of Gray and Ruškuc that any group can occur as a maximal subgroup of some free idempotent generated semigroup. Unlike their proof, ours involves a natural biordered set and very little machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is more usual to identify elements of E with those of \(\overline{E}\), but it helps the clarity of our later arguments to make this distinction.

References

  1. Brittenham, M., Margolis, S.W., Meakin, J.: Subgroups of free idempotent generated semigroups need not be free. J. Algebra 321, 3026–3042 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brittenham, M., Margolis, S.W., Meakin, J.: Subgroups of free idempotent generated semigroups: full linear monoid (2010). arXiv:1009.5683

  3. Campbell, C.M., Robertson, E.F., Ruškuc, N., Thomas, R.M.: Rewriting a semigroup presentation. Int. J. Algebra Comput. 5, 81–103 (1995)

    Article  MATH  Google Scholar 

  4. Dolinka, I., Gray, R.: Maximal subgroups of free idempotent generated semigroups over the full linear monoid. Trans. Am. Math. Soc. 366(1), 419–455 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dolinka, I., Ruškuc, N.: Every group is a maximal subgroup of the free idempotent generated semigroup over a band. Int. J. Algebra Comput. 23, 573–581 (2013)

    Article  MATH  Google Scholar 

  6. Easdown, D.: Biordered sets come from semigroups. J. Algebra 96, 581–591 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Erdös, J.A.: On products of idempotent matrices. Glasg. Math. J. 8, 118–122 (1967)

    Article  Google Scholar 

  8. Fitz-Gerald, D.G.: On inverses of products of idempotents in regular semigroups. J. Aust. Math. Soc. 13, 335–337 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hall, T.E.: On regular semigroups. J. Algebra 24, l–24 (1973)

    Article  Google Scholar 

  10. Fountain, J., Gould, V.: Products of idempotent endomorphisms of relatively free algebras with weak exchange properties. Proc. Edinb. Math. Soc. 50, 343–362 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fountain, J., Lewin, A.: Products of idempotent endomorphisms of an independence algebra of finite rank. Proc. Edinb. Math. Soc. 35, 493–500 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gould, V.: Independence algebras. Algebra Univers. 33, 294–318 (1995)

    Article  MATH  Google Scholar 

  13. Gould, V., Yang, D.: Every group is the maximal subgroup of a naturally occurring free idempotent generated semigroup (2012). arXiv:1209.1242

  14. Gray, R., Ruškuc, N.: On maximal subgroups of free idempotent generated semigroups. Isr. J. Math. 189, 147–176 (2012)

    Article  MATH  Google Scholar 

  15. Gray, R., Ruškuc, N.: Maximal subgroups of free idempotent-generated semigroups over the full transformation monoid. Proc. Lond. Math. Soc. 104, 997–1018 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Howie, J.M.: The subsemigroup generated by the idempotents of a full transformation semigroup. J. Lond. Math. Soc. 41, 707–716 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  17. Howie, J.M.: Fundamentals of Semigroup Theory. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  18. Kilp, M., Knauer, U., Mikhalev, A.V.: Monoids, Acts, and Categories. de Gruyter, Berlin (2000)

    Book  MATH  Google Scholar 

  19. McElwee, B.: Subgroups of the free semigroup on a biordered set in which principal ideals are singletons. Commun. Algebra 30, 5513–5519 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nambooripad, K.S.S.: Structure of regular semigroups. I. Mem. Am. Math. Soc. 224 (1979)

  21. Putcha, M.: Products of idempotents in algebraic monoids. J. Aust. Math. Soc. 80, 193–203 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ruškuc, N.: Presentations for subgroups of monoids. J. Algebra 220, 365–380 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to a careful referee for some helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Gould.

Additional information

Communicated by László Márki.

Dedicated with gratitude and affection to the memory of John Howie.

Research supported by EPSRC grant no. EP/I032312/1. The authors would like to thank Robert Gray and Nik Ruškuc for some useful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gould, V., Yang, D. Every group is a maximal subgroup of a naturally occurring free idempotent generated semigroup. Semigroup Forum 89, 125–134 (2014). https://doi.org/10.1007/s00233-013-9549-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-013-9549-9

Keywords

Navigation