[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We study the Oliker–Prussner method exploiting its geometric nature. We derive discrete stability and continuous dependence estimates in the max-norm by using a discrete Alexandroff estimate and the Brunn–Minkowski inequality. We show that the method is exact for all convex quadratic polynomials provided the underlying set of nodes is translation invariant within the domain; nodes still conform to the domain boundary. . This gives a suitable notion of operator consistency which, combined with stability, leads to pointwise rates of convergence for classical and non-classical solutions of the Monge–Ampère equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguilera, N.E., Morin, P.: On convex functions and the finite element method. SIAM J. Numer. Anal. 47(4), 3139–3157 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awanou, G.: Standard finite elements for the numerical resolution of the elliptic Monge–Ampère equations: classical solutions. IMA J. Numer. Anal. 35(3), 1150–1166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benamou, J.D., Collino, F., Mirebeau, J.M.: Monotone and consistent discretization of the Monge–Ampère operator. Math. Comp. 85(302), 2743–2775 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benamou, J.D., Froese, D.B., Oberman, A.M.: Two numerical methods for the elliptic Monge–Ampère equation. M2AN. Math. Model. Numer. Anal. 44, 737–758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Gudi, T., Neilan, M., Sung, L.-Y.: \( C^0\) penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comp. 80(276), 1979–1995 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge–Ampère equation. ESAIM Math. Model. Numer. Anal. 46(5), 979–1001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Volume 15 of Texts in Applied Mathematics, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  10. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations, volume 43 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1995)

    Google Scholar 

  11. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. of Math. (2) 131(1), 135–150 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A.: A localization property of viscosity solutions to the Monge–Ampère equation and their strict convexity. Ann. of Math. (2) 131(1), 129–134 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carlier, G., Lachand-Robert, T., Maury, B.: A numerical approach to variational problems subject to convexity constraint. Numer. Math. 88(2), 299–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, L., Holst, M.: Efficient mesh optimization schemes based on optimal Delaunay triangulations. Comput. Methods Appl. Mech. Eng. 200(9–12), 967–984 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, L., Xu, J.: Optimal Delaunay triangulations. J. Comput. Math. 22(2), 299–308 (2004). Special issue dedicated to the 70th birthday of Professor Zhong-Ci Shi

    MathSciNet  MATH  Google Scholar 

  16. Choné, P., Le Meur, H.J.: Non-convergence result for conformal approximation of variational problems subject to a convexity constraint. Numer. Funct. Anal. Optim. 22(5–6), 529–547 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris 336(9), 779–784 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge–Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Math. Acad. Sci. Paris 339(12), 887–892 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in two dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006). (electronic)

    MathSciNet  MATH  Google Scholar 

  21. Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge–Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)

    Article  MATH  Google Scholar 

  22. Edelsbrunner, H.: Triangulations and meshes in computational geometry. In Acta numerica, 2000, volume 9 of Acta Numer., pp. 133–213. Cambridge Univ. Press, Cambridge (2000)

  23. Feng, X., Kao, C.-Y., Lewis, T.: Convergent finite difference methods for one-dimensional fully nonlinear second order partial differential equations. J. Comput. Appl. Math. 254, 81–98 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge–Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge–Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49, 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39(3), 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gutiérrez, C.E.: The Monge–Ampère Equation. Progress in Nonlinear Differential Equations and their Applications, vol. 44. Birkhäuser Boston, Boston (2001)

    Google Scholar 

  31. Joe, B.: Construction of three-dimensional Delaunay triangulations using local transformations. Comput. Aided Geom. Des. 8(2), 123–142 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuo, H.J., Trudinger, N.S.: Linear elliptic difference inequalites with random coefficients. Math. Comp. 55, 37–53 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuo, H.J., Trudinger, N.S.: Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal. 29, 123–135 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuo, H.-J., Trudinger, N.S.: Positive difference operators on general meshes. Duke Math. J. 83, 415–433 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuo, H.-J., Trudinger, N.S.: A note on the discrete Aleksandrov–Bakelman maximum principle. In: Proceedings of 1999 International Conference on Nonlinear Analysis (Taipei), vol. 4, pp. 55–64 (2000)

  36. Mérigot, Q., Oudet, É.: Handling convexity-like constraints in variational problems. SIAM J. Numer. Anal. 52(5), 2466–2487 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mirebeau, J.M.: Discretization of the 3D Monge–Ampere operator, between wide stencils and power diagrams. ESAIM Math. Model. Numer. Anal. 49(5), 1511–1523 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère equation. Numer. Math. 115(3), 371–394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Neilan, M.: Quadratic finite element approximations of the Monge–Ampère equation. J. Sci. Comput. 54(1), 200–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nochetto, R.H., Zhang, W.: Discrete ABP estimate and convergence rates for linear elliptic equations in non-divergence form. Found. Comput. Math. 18(3), 537–593 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10, 221–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Oberman, A.M.: A numerical method for variational problems with convexity constraints. SIAM J. Sci. Comput. 35(1), A378–A396 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation \((\partial ^2z/\partial x^2)(\partial ^2z/\partial y^2)-((\partial ^2z/\partial x\partial y))^2=f\) and its discretizations. I. Numer. Math. 54, 271–293 (1988)

    Article  MATH  Google Scholar 

  44. Sorensen, D.C., Glowinski, R.: A quadratically constrained minimization problem arising from PDE of Monge–Ampère type. Numer. Algor. 53(1), 53–66 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujun Zhang.

Additional information

Both authors were partially supported by NSF Grants DMS-1109325 and DMS-1411808. The second author was also partially supported by the Brin Postdoctoral Fellowship of the University of Maryland and the start up fund of Rutgers University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nochetto, R.H., Zhang, W. Pointwise rates of convergence for the Oliker–Prussner method for the Monge–Ampère equation. Numer. Math. 141, 253–288 (2019). https://doi.org/10.1007/s00211-018-0988-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-018-0988-9

Mathematics Subject Classification

Navigation