[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Glyphosate (G) is the largest selling herbicide worldwide; the most common formulations (Roundup, R) contain polyoxyethyleneamine as main surfactant. Recent findings indicate that G exposure may cause DNA damage and cancer in humans. Aim of this investigation was to study the cytotoxic and genotoxic properties of G and R (UltraMax) in a buccal epithelial cell line (TR146), as workers are exposed via inhalation to the herbicide. R induced acute cytotoxic effects at concentrations >40 mg/l after 20 min, which were due to membrane damage and impairment of mitochondrial functions. With G, increased release of extracellular lactate dehydrogenase indicative for membrane damage was observed at doses >80 mg/l. Both G and R induced DNA migration in single-cell gel electrophoresis assays at doses >20 mg/l. Furthermore, an increase of nuclear aberrations that reflect DNA damage was observed. The frequencies of micronuclei and nuclear buds were elevated after 20-min exposure to 10–20 mg/l, while nucleoplasmatic bridges were only enhanced by R at the highest dose (20 mg/l). R was under all conditions more active than its active principle (G). Comparisons with results of earlier studies with lymphocytes and cells from internal organs indicate that epithelial cells are more susceptible to the cytotoxic and DNA-damaging properties of the herbicide and its formulation. Since we found genotoxic effects after short exposure to concentrations that correspond to a 450-fold dilution of spraying used in agriculture, our findings indicate that inhalation may cause DNA damage in exposed individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BN-MNi:

Binucleated cells with micronuclei

G:

Glyphosate

LDHe:

Extracellular lactate dehydrogenase

MNi:

Micronuclei

NB:

Nuclear buds

NDI:

Nuclear division index

NPB:

Nucleoplasmic bridge

NR:

Neutral red

R:

Roundup-Ultramax

SRB:

Sulforhodamine B

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl-amino)carbonyl]-2H-tetrazolium hydroxide

References

  • Alvarez-Moya C, Silva MR, Arambula AR, Sandoval AI, Vasquez HC, Gonzalez Montes RM (2011) Evaluation of genetic damage induced by glyphosate isopropylamine salt using Tradescantia bioassays. Genet Mol Biol 34:127–130

    Article  PubMed  CAS  Google Scholar 

  • Benachour N, Seralini GE (2009) Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic, and placental cells. Chem Res Toxicol 22:97–105

    Article  PubMed  CAS  Google Scholar 

  • Benachour N, Sipahutar H, Moslemi S, Gasnier C, Travert C, Seralini GE (2007) Time- and dose-dependent effects of roundup on human embryonic and placental cells. Arch Environ Contam Toxicol 53:126–133

    Article  PubMed  CAS  Google Scholar 

  • Bolognesi C, Bonatti S, Degan P, Gallerani E, Peluso M, Rabboni R, Roggieri P, Abbondandolo A (1997) Genotoxic activity of glyphosate and its technical formulation roundup. J Agric Food Chem 45:1957–1962

    Article  CAS  Google Scholar 

  • Bolognesi C, Carrasquilla G, Volpi S, Solomon KR, Marshall EJ (2009) Biomonitoring of genotoxic risk in agricultural workers from five colombian regions: association to occupational exposure to glyphosate. J Toxicol Environ Health A 72:986–997

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, El-Zein R, Bolognesi C, Fenech M (2011) Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis 26:93–100

    Article  PubMed  CAS  Google Scholar 

  • Boyle MA, O’Donnell MJ, Russell RJ, Coleman DC (2010) Lack of cytotoxicity by Trustwater Ecasol used to maintain good quality dental unit waterline output water in keratinocyte monolayer and reconstituted human oral epithelial tissue models. J Dent 38:930–940

    Article  PubMed  CAS  Google Scholar 

  • Brosin A, Wolf V, Mattheus A, Heise H (1997) Use of XTT-assay to assess the cytotoxicity of different surfactants and metal salts in human keratinocytes (HaCaT). A feasible method for in vitro testing of skin irritants. Acta Derm Venereol 77:26–28

    PubMed  CAS  Google Scholar 

  • Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200

    Article  PubMed  CAS  Google Scholar 

  • Cavas T, Konen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268

    Article  PubMed  CAS  Google Scholar 

  • Clements C, Ralph S, Petras M (1997) Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (comet) assay. Environ Mol Mutagen 29:277–288

    Article  PubMed  CAS  Google Scholar 

  • De Roos AJ, Zahm SH, Cantor KP, Weisenburger DD, Holmes FF, Burmeister LF, Blair A (2003) Integrative assessment of multiple pesticides as risk factors for non-Hodgkin’s lymphoma among men. Occup Environ Med 60:E11

    Article  PubMed  Google Scholar 

  • De Roos AJ, Blair A, Rusiecki JA, Hoppin JA, Svec M, Dosemeci M, Sandler DP, Alavanja MC (2005) Cancer incidence among glyphosate-exposed pesticide applicators in the agricultural health study. Environ Health Perspect 113:49–54

    Article  PubMed  Google Scholar 

  • Dimitrov BD, Gadeva PG, Benova DK, Bineva MV (2006) Comparative genotoxicity of the herbicides Roundup, Stomp and Reglone in plant and mammalian test systems. Mutagenesis 21:375–382

    Article  PubMed  CAS  Google Scholar 

  • Dutra A, Pak E, Wincovitch S, John K, Poirier MC, Olivero OA (2010) Nuclear bud formation: a novel manifestation of Zidovudine genotoxicity. Cytogenet Genome Res 128:105–110

    Article  PubMed  CAS  Google Scholar 

  • Eirheim HU, Bundgaard C, Nielsen HM (2004) Evaluation of different toxicity assays applied to proliferating cells and to stratified epithelium in relation to permeability enhancement with glycocholate. Toxicol In Vitro 18:649–657

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M, Hardell L, Carlberg M, Akerman M (2008) Pesticide exposure as risk factor for non-Hodgkin lymphoma including histopathological subgroup analysis. Int J Cancer 123:1657–1663

    Article  PubMed  CAS  Google Scholar 

  • Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  PubMed  CAS  Google Scholar 

  • Gasnier C, Dumont C, Benachour N, Clair E, Chagnon MC, Seralini GE (2009) Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262:184–191

    Article  PubMed  CAS  Google Scholar 

  • Gehin A, Guillaume YC, Millet J, Guyon C, Nicod L (2005) Vitamins C and E reverse effect of herbicide-induced toxicity on human epidermal cells HaCaT: a biochemometric approach. Int J Pharm 288:219–226

    Article  PubMed  CAS  Google Scholar 

  • Grisolia CK (2002) A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutat Res 518:145–150

    PubMed  CAS  Google Scholar 

  • Guilherme S, Gaivao I, Santos MA, Pacheco M (2010) European eel (Anguilla anguilla) genotoxic and pro-oxidant responses following short-term exposure to Roundup–a glyphosate-based herbicide. Mutagenesis 25:523–530

    Article  PubMed  CAS  Google Scholar 

  • Hardell L, Eriksson M (1999) A case-control study of non-Hodgkin lymphoma and exposure to pesticides. Cancer 85:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Hardell L, Eriksson M, Nordstrom M (2002) Exposure to pesticides as risk factor for non-Hodgkin’s lymphoma and hairy cell leukemia: pooled analysis of two Swedish case-control studies. Leuk Lymphoma 43:1043–1049

    PubMed  CAS  Google Scholar 

  • Hartmann A, Agurell E, Beevers C, Brendler-Schwaab S, Burlinson B, Clay P, Collins A, Smith A, Speit G, Thybaud V, Tice RR (2003) Recommendations for conducting the in vivo alkaline Comet assay. 4th international Comet assay workshop. Mutagenesis 18:45–51

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Sutou S, Shimada H, Sato S, Sasaki YF, Wakata A (1989) Difference between intraperitoneal and oral gavage application in the micronucleus test. The 3rd collaborative study by CSGMT/JEMS.MMS. Collaborative study group for the micronucleus test/mammalian mutagenesis study group of the environmental mutagen society of Japan. Mutat Res 223:329–344

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen J, Nielsen EB, Brondum-Nielsen K, Christensen ME, Olin HB, Tommerup N, Rassing MR (1999) Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability. Eur J Oral Sci 107:138–146

    Article  PubMed  CAS  Google Scholar 

  • Lioi MB, Scarfi MR, Santoro A, Barbieri R, Zeni O, Di Berardino D, Ursini MV (1998a) Genotoxicity and oxidative stress induced by pesticide exposure in bovine lymphocyte cultures in vitro. Mutat Res 403:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lioi MB, Scarfi MR, Santoro A, Barbieri R, Zeni O, Salvemini F, Di Berardino D, Ursini MV (1998b) Cytogenetic damage and induction of pro-oxidant state in human lymphocytes exposed in vitro to gliphosate, vinclozolin, atrazine, and DPX-E9636. Environ Mol Mutagen 32:39–46

    Article  PubMed  CAS  Google Scholar 

  • Lueken A, Juhl-Strauss U, Krieger G, Witte I (2004) Synergistic DNA damage by oxidative stress (induced by H2O2) and nongenotoxic environmental chemicals in human fibroblasts. Toxicol Lett 147:35–43

    Article  PubMed  CAS  Google Scholar 

  • Maines MD (1998) In vitro methods for detecting cytotoxicity in current protocols in toxicology. Wiley, Hoboken

    Google Scholar 

  • McDuffie HH, Pahwa P, McLaughlin JR, Spinelli JJ, Fincham S, Dosman JA, Robson D, Skinnider LF, Choi NW (2001) Non-Hodgkin’s lymphoma and specific pesticide exposures in men: cross-Canada study of pesticides and health. Cancer Epidemiol Biomarkers Prev 10:1155–1163

    PubMed  CAS  Google Scholar 

  • Mladinic M, Berend S, Vrdoljak AL, Kopjar N, Radic B, Zeljezic D (2009a) Evaluation of genome damage and its relation to oxidative stress induced by glyphosate in human lymphocytes in vitro. Environ Mol Mutagen 50:800–807

    Article  PubMed  CAS  Google Scholar 

  • Mladinic M, Perkovic P, Zeljezic D (2009b) Characterization of chromatin instabilities induced by glyphosate, terbuthylazine and carbofuran using cytome FISH assay. Toxicol Lett 189:130–137

    Article  PubMed  CAS  Google Scholar 

  • Monroy CM, Cortes AC, Sicard DM, de Restrepo HG (2005) Cytotoxicity and genotoxicity of human cells exposed in vitro to glyphosate. Biomedica 25:335–345

    PubMed  Google Scholar 

  • Paz-y-Miño C, Sánchez ME, Arévalo M, Muñoz MJ, Witte T, De-la-Carrera GO, Leone PE (2007) Evaluation of DNA damage in an Ecuadorian population exposed to glyphosate. Genet Mol Biol 30:456–460

    Article  Google Scholar 

  • Poletta GL, Larriera A, Kleinsorge E, Mudry MD (2009) Genotoxicity of the herbicide formulation Roundup (glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the micronucleus test. Mutat Res 672:95–102

    PubMed  CAS  Google Scholar 

  • Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131

    Article  PubMed  CAS  Google Scholar 

  • REUTERS (2011) Roundup: cancer cause or crucial for food production? “The Huffington Post”. http://www.huffingtonpost.com/2011/04/11/round-up-cancer-cause_n_847423.html

  • Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE (2005) Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect 113:716–720

    Article  PubMed  CAS  Google Scholar 

  • Rupniak HT, Rowlatt C, Lane EB, Steele JG, Trejdosiewicz LK, Laskiewicz B, Povey S, Hill BT (1985) Characteristics of four new human cell lines derived from squamous cell carcinomas of the head and neck. J Natl Cancer Inst 75:621–635

    PubMed  CAS  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  • USEP Agency (1993) Re-registration Eligibility Decision (RED): Glyphosate. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  PubMed  CAS  Google Scholar 

  • WHO (1994) Glyphosate. Environmental health criteria no. 159. World Health Organization, Geneva

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Knasmueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, V.J., Fürhacker, M., Nersesyan, A. et al. Cytotoxic and DNA-damaging properties of glyphosate and Roundup in human-derived buccal epithelial cells. Arch Toxicol 86, 805–813 (2012). https://doi.org/10.1007/s00204-012-0804-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0804-8

Keywords

Navigation